Propriétés du tJDBCInput MapReduce (déprécié) - 7.3

JDBC

EnrichVersion
Cloud
7.3
EnrichProdName
Talend Big Data
Talend Big Data Platform
Talend Data Fabric
Talend Data Integration
Talend Data Management Platform
Talend Data Services Platform
Talend ESB
Talend MDM Platform
Talend Open Studio for Big Data
Talend Open Studio for Data Integration
Talend Open Studio for ESB
Talend Real-Time Big Data Platform
EnrichPlatform
Studio Talend
task
Création et développement > Systèmes tiers > Composants Database > Composants JDBC
Gouvernance de données > Systèmes tiers > Composants Database > Composants JDBC
Qualité et préparation de données > Systèmes tiers > Composants Database > Composants JDBC

Ces propriétés sont utilisées pour configurer le tJDBCInput s'exécutant dans le framework de Jobs MapReduce.

Le composant tJDBCInput MapReduce appartient à la famille MapReduce.

Le composant de ce framework est disponible dans tous les produits Talend avec Big Data nécessitant une souscription et dans Talend Data Fabric.

Le framework MapReduce est déprécié à partir de la version 7.3 de Talend. Utilisez des Jobs Talend pour Apache Spark afin d'accomplir vos tâches d'intégration.

Basic settings

Property type

Peut être Built-In ou Repository.

 

Built-In : aucune propriété n'est stockée de manière centrale.

 

Repository : Sélectionnez le fichier dans lequel sont stockées les propriétés du composant.

Cliquez sur cette icône pour ouvrir l'assistant de configuration de connexion à la base de données et enregistrer les paramètres de connexion que vous avez définis dans la vue Basic settings du composant.

Pour plus d'informations concernant la configuration et le stockage des paramètres de connexion à la base de données, consultez le Guide d'utilisation du Studio Talend.

JDBC URL

URL JDBC de la base de données à utiliser. Par exemple, l'URL JDBC de la base de données Amazon Redshift est jdbc:redshift://endpoint:port/database.

Driver JAR

Renseignez cette table pour charger les pilotes Jar requis. Pour ce faire, cliquez sur le bouton [+], sous la table, pour ajouter autant de lignes que nécessaire, chaque ligne pour un Jar de pilote. Sélectionnez la cellule et cliquez sur le bouton [...] à droite de la cellule pour ouvrir la boîte de dialogue Module, dans laquelle vous pouvez sélectionner le Jar du pilote à utiliser. Par exemple, le pilote Jar RedshiftJDBC41-1.1.13.1013.jar pour la base de données Redshift.

Pour plus d'informations, consultez Importer un pilote de base de données.

Class Name

Saisissez entre guillemets doubles le nom de la classe pour le pilote spécifié. Par exemple, pour le pilote RedshiftJDBC41-1.1.13.1013.jar, le nom à saisir est com.amazon.redshift.jdbc41.Driver.

Username et Password

URL JDBC de la base de données à utiliser. Par exemple, l'URL JDBC de la base de données Amazon Redshift est jdbc:redshift://endpoint:port/database.

Pour saisir le mot de passe, cliquez sur le bouton [...] à côté du champ Password, puis, dans la boîte de dialogue qui s'ouvre, saisissez le mot de passe entre guillemets doubles et cliquez sur OK afin de sauvegarder les paramètres.

Schema et Edit schema

Un schéma est une description de lignes. Il définit le nombre de champs (colonnes) à traiter et à passer au composant suivant. Lorsque vous créez un Job Spark, évitez le mot réservé line lors du nommage des champs.

 

Built-in : le schéma est créé et conservé localement pour ce composant seulement.

 

Repository : le schéma existe déjà et est stocké dans le Repository. Ainsi, il peut être réutilisé dans des Jobs et projets.

 

Modifiez le schéma en cliquant sur Edit Schema. Si le schéma est en mode Repository, trois options sont disponibles :

  • View schema : sélectionnez cette option afin de voir uniquement le schéma.

  • Change to built-in property : sélectionnez cette option pour passer le schéma en mode Built-In et effectuer des modifications locales.

  • Update repository connection : sélectionnez cette option afin de modifier le schéma stocké dans le référentiel et décider de propager ou non les modifications à tous les Jobs. Si vous souhaitez propager les modifications uniquement au Job courant, cliquez sur No et sélectionnez à nouveau la métadonnée du schéma dans la fenêtre Repository Content.

Table Name

Saisissez le nom de la table de laquelle lire les données.

Die on error

Cochez cette case pour arrêter l'exécution du Job lorsqu'une erreur survient.

Décochez la case pour ignorer les lignes en erreur et terminer le traitement des lignes sans erreur. Lorsque les erreurs sont ignorées, vous pouvez récupérer les lignes en erreur en utilisant la connexion Row > Reject.

Query type et Query

Saisissez votre requête de base de données en faisant attention à ce que l'ordre des champs corresponde à celui défini dans le schéma.

Si vous utilisez la fonctionnalité de schéma dynamique, la requête SELECT doit contenir le caractère * de remplacement, afin de récupérer toutes les colonnes de la table sélectionnée.

Utilisation

Règle d'utilisation

Dans un Job Map/Reduce Talend , ce composant est utilisé comme composant de début et requiert un composant de transformation comme lien de sortie. Les autres composants utilisés avec lui doivent également être des composants Map/Reduce. Ils génèrent nativement du code Map/Reduce pouvant être exécuté directement dans Hadoop.

Pour plus d'informations concernant les Jobs Map/Reduce Talend, consultez les sections décrivant comment créer, convertir et configurer un Job Map/Reduce Talend, dans le Guide de prise en main de Talend Open Studio for Big Data.

Notez que, dans cette documentation, sauf mention contraire, un scénario présente uniquement des Jobs Standard, c'est-à-dire des Jobs Talend traditionnels d'intégration de données et non des Jobs Map/Reduce.

Hadoop Connection

Vous devez utiliser l'onglet Hadoop Configuration de la vue Run afin de définir la connexion à une distribution Hadoop donnée pour le Job complet.

Cette connexion fonctionne uniquement pour le Job dans lequel vous l'avez définie.

Limitation

Il est recommandé d'utiliser les bases de données suivantes avec la version Map/Reduce de ce composant : DB2, Informix, MSSQL, MySQL, Netezza, Oracle, Postgres, Teradata et Vertica.

Ce composant peut également fonctionner avec d'autres bases de données. Cependant, ces dernières n'ont pas nécessairement été testées.