ほぼリアルタイムでTwitterの流れを分析する - 7.3

Kafka

EnrichVersion
Cloud
7.3
EnrichProdName
Talend Big Data
Talend Big Data Platform
Talend Data Fabric
Talend Open Studio for Big Data
Talend Real-Time Big Data Platform
EnrichPlatform
Talend Studio
task
ジョブデザインと開発 > サードパーティーシステム > メッセージングコンポーネント > Kafka
データガバナンス > サードパーティーシステム > メッセージングコンポーネント > Kafka
データクオリティとプレパレーション > サードパーティーシステム > メッセージングコンポーネント > Kafka

このシナリオは、Talend Real Time Big Data PlatformおよびTalend Data Fabricにのみ適用されます。

Talendでサポートされているテクノロジーの詳細は、Talendコンポーネントを参照してください。

このシナリオでは、Spark Streamingジョブを作成して、各15秒間隔の最後に、Twitterユーザーが前回の20秒間に自分のツイートでパリに言及した際に最もよく使用しているハッシュタグを分析します。

たとえば、オープンソースのサードパーティプログラムを使用して、特定のKafkaトピックtwitter_liveでTwitterストリームを送受信し、このトピックのツイートを使用するためにこのシナリオで設計したジョブを使用します。

ハッシュタグ付きのTwitter生データの行は、https://dev.twitter.com/overview/api/entities-in-twitter-objects#hashtagsで示されている例のように読み取られます。

このシナリオを複製する前に、Kafkaシステムが稼動していること、また、使用するKafkaトピックにアクセスするための適切な権限とアクセス権があることを確認します。また、TwitterストリームをほぼリアルタイムでKafkaに転送するには、Twitterストリーミングプログラムが必要です。 Talend は、この種のプログラムを提供していませんが、この目的のために作成されたいくつかの無料のプログラムがGithubなどの一部のオンラインコミュニティから入手できます。

tHDFSConfigurationはこのシナリオで、ジョブに依存するjarファイルの転送先となるHDFSシステムに接続するために、Sparkによって使用されます。

[Run] (実行)ビューの[Spark Configuration] (Spark設定)タブで、ジョブ全体でのSparkクラスターへの接続を定義します。また、ジョブでは、依存jarファイルを実行することを想定しているため、Sparkがこれらのjarファイルにアクセスできるように、これらのファイルの転送先にするファイルシステム内のディレクトリを指定する必要があります。
  • Yarnモード(YarnクライアントまたはYarnクラスター):
    • Google Dataprocを使用している場合、[Spark configuration] (Spark設定)タブの[Google Storage staging bucket] (Google Storageステージングバケット)フィールドにバケットを指定します。

    • HDInsightを使用している場合、[Spark configuration] (Spark設定)タブの[Windows Azure Storage configuration] (Windows Azure Storage設定)エリアでジョブのデプロイメントに使用するブロブを指定します。

    • Altusを使用する場合は、[Spark configuration] (Spark設定)タブでジョブのデプロイにS3バケットまたはAzure Data Lake Storageを指定します。
    • Quboleを使用する場合は、ジョブにtS3Configurationを追加し、QuboleでS3システム内に実際のビジネスデータを書き込みます。tS3Configurationを使用しないと、このビジネスデータはQubole HDFSシステムに書き込まれ、クラスターをシャットダウンすると破棄されます。
    • オンプレミスのディストリビューションを使用する場合は、クラスターで使用されているファイルシステムに対応する設定コンポーネントを使用します。一般的に、このシステムはHDFSになるため、tHDFSConfigurationを使用します。

  • [Standalone mode] (スタンドアロンモード): tHDFSConfigurationまたはtS3Configurationなど、クラスターで使用されているファイルシステムに対応する設定コンポーネントを使用します。

    ジョブ内に設定コンポーネントがない状態でDatabricksを使用している場合、ビジネスデータはDBFS (Databricks Filesystem)に直接書き込まれます。

このシナリオを複製するには、次の手順に従います。