tBigQueryOutput properties for Apache Spark Batch - 6.5

Big Query

EnrichVersion
6.5
EnrichProdName
Talend Big Data
Talend Big Data Platform
Talend Data Fabric
Talend Data Integration
Talend Data Management Platform
Talend Data Services Platform
Talend ESB
Talend MDM Platform
Talend Open Studio for Big Data
Talend Open Studio for Data Integration
Talend Open Studio for ESB
Talend Open Studio for MDM
Talend Real-Time Big Data Platform
EnrichPlatform
Talend Studio
task
Data Governance > Third-party systems > Cloud storages > Google BigQuery components
Data Quality and Preparation > Third-party systems > Cloud storages > Google BigQuery components
Design and Development > Third-party systems > Cloud storages > Google BigQuery components

These properties are used to configure tBigQueryOutput running in the Spark Batch Job framework.

The Spark Batch tBigQueryOutput component belongs to the Databases family.

The component in this framework is available in all subscription-based Talend products with Big Data and Talend Data Fabric.

Basic settings

Dataset

Enter the name of the dataset to which the table to be created or updated belongs.

When you use BigQuery with Dataproc, in Google Cloud Platform, select the same region for your BigQuery dataset as for the Dataproc cluster to be run.

Table

Enter the name of the table to be created or updated.

Schema and Edit Schema

A schema is a row description. It defines the number of fields (columns) to Repository. When you create a Spark Job, avoid the reserved word line when naming the fields.

Click Edit schema to make changes to the schema. If the current schema is of the Repository type, three options are available:

  • View schema: choose this option to view the schema only.

  • Change to built-in property: choose this option to change the schema to Built-in for local changes.

  • Update repository connection: choose this option to change the schema stored in the repository and decide whether to propagate the changes to all the Jobs upon completion. If you just want to propagate the changes to the current Job, you can select No upon completion and choose this schema metadata again in the [Repository Content] window.

 

Built-In: You create and store the schema locally for this component only.

 

Repository: You have already created the schema and stored it in the Repository. You can reuse it in various projects and Job designs.

Table operations

Select the operation to be performed on the defined table:
  • Create table if does not exist: The table is created if it does not exist.

  • Truncate: The table content is deleted.

Data operation

Select the operation to be performed on the incoming data:
  • Append: Append data to the table, whether the table is empty or not.

Usage

Usage rule

This is an input component. It sends data extracted from BigQuery to the component that follows it.

Place a tBigQueryConfiguration component in the same Job because it needs to use the BigQuery configuration information provided by tBigQueryConfiguration.

Spark Connection

You need to use the Spark Configuration tab in the Run view to define the connection to a given Spark cluster for the whole Job. In addition, since the Job expects its dependent jar files for execution, you must specify the directory in the file system to which these jar files are transferred so that Spark can access these files:
  • Yarn mode: when using Google Dataproc, specify a bucket in the Google Storage staging bucket field in the Spark configuration tab; when using other distributions, use a tHDFSConfiguration component to specify the directory.

  • Standalone mode: you need to choose the configuration component depending on the file system you are using, such as tHDFSConfiguration or tS3Configuration.

This connection is effective on a per-Job basis.