Apache Spark StreamingのtFileStreamInputPositionalプロパティ - 7.3

Positional

Version
7.3
Language
日本語 (日本)
Product
Talend Big Data
Talend Big Data Platform
Talend Data Fabric
Talend Data Integration
Talend Data Management Platform
Talend Data Services Platform
Talend ESB
Talend MDM Platform
Talend Open Studio for Big Data
Talend Open Studio for Data Integration
Talend Open Studio for ESB
Talend Real-Time Big Data Platform
Module
Talend Studio
Content
ジョブデザインと開発 > サードパーティーシステム > ファイルコンポーネント > 固定長
データガバナンス > サードパーティーシステム > ファイルコンポーネント > 固定長
データクオリティとプレパレーション > サードパーティーシステム > ファイルコンポーネント > 固定長

このプロパティはSpark Streamingジョブフレームワークで実行されているtFileStreamInputPositionalを設定するために使います。

Spark Streaming tFileStreamInputPositionalコンポーネントはファイルファミリーのコンポーネントです。

このコンポーネントのストリーミングバージョンは、Talend Real Time Big Data PlatformおよびTalend Data Fabricで使用できます。

基本設定

[Define a storage configuration component] (ストレージ設定コンポーネントを定義)

HDFSなどのターゲットファイルシステムへの接続の設定情報を提供するために使用する設定コンポーネントを選択します。

このチェックボックスをオフにすると、ターゲットファイルシステムはローカルシステムになります。

使用する接続設定は同じジョブ内にあることが必要です。たとえば、tHDFSConfigurationコンポーネントをジョブにドロップした場合は、このコンポーネントを選択して、所定のHDFSシステム内で結果を書き込むことができます。

[Property type] (プロパティタイプ)

[Built-In] (組み込み)または[Repository] (リポジトリー)のいずれか。

 

[Built-In] (組み込み): プロパティデータは一元的に保存されません。

 

[Repository] (リポジトリー): プロパティを保存するリポジトリーファイルを選択します。

プロパティは、[Repository] (リポジトリー)ツリーの[Hadoop Cluster] (Hadoopクラスター)ノードに一元的に保存されます。

後続するフィールドは、取得されたデータを使用して事前に入力されます。

[Hadoop Cluster] (Hadoopクラスター)ノードの詳細は、『Getting Started Guide』を参照してください。

[Schema] (スキーマ)[Edit schema] (スキーマを編集)

スキーマとは行の説明のことです。処理して次のコンポーネントに渡すフィールド(カラム)数を定義します。Sparkジョブを作成する場合、フィールドの命名時は予約語のlineを避けます。

スキーマを変更するには[Edit schema] (スキーマを編集)をクリックします。
注: 変更を加えると、スキーマは自動的に組み込みになります。
 

[Built-in] (組み込み): そのコンポーネントのみのスキーマを作成して、ローカルに保存します。

 

[Repository] (リポジトリー): スキーマは作成済みで、リポジトリーに保管されています。さまざまなプロジェクトやジョブデザインで再利用できます。

[Folder/File] (フォルダー/ファイル)

ファイルシステムで使用するデータを参照するか、パスを入力します。

設定したパスがフォルダーを指す場合、このコンポーネントによりフォルダーに保管されているすべてのファイル(/user/talend/inなど)が読み取られます。サブフォルダーが存在する場合、[Spark configuration] (Spark設定)タブの[Advanced properties] (詳細プロパティ)テーブルでプロパティspark.hadoop.mapreduce.input.fileinputformat.input.dir.recursivetrueに設定しない限り、サブフォルダーは自動的に無視されます。
  • 使用するファイルシステムに応じて、ジョブに配置されたHDFS向けtHDFSConfigurationコンポーネント、S3向けtS3Configurationコンポーネント、Azure StorageおよびAzure Data Lake Storage向けtAzureFSConfigurationなど、対応する設定コンポーネントを適切に設定します。

このフィールドに複数のファイルまたはディレクトリーを指定する場合は、パスをそれぞれコンマ(,)で区切ります。

読み込むファイルが圧縮されている場合は、拡張子を付けてファイル名を入力します。するとtFileInputPositionalは実行時に自動的に解凍します。サポートされている圧縮形式と対応する拡張子は次のとおりです。

  • DEFLATE: *.deflate

  • gzip: *.gz

  • bzip2: *.bz2

  • LZO: *.lzo

参照用のボタンはSpark Localモードでは機能しません。お使いのディストリビューションでStudioがサポートしているその他のSpark Yarnモードを使用している場合は、同じジョブ内の設定コンポーネント(tHDFSConfigurationなど)で接続を適切に設定したことを確認する必要があります。使用されるファイルシステムに応じて設定コンポーネントを使用します。

[Die on error] (エラー発生時に強制終了)

このチェックボックスをオンにすると、エラー発生時にジョブの実行が停止されます。

[Row separator] (行区切り)

行の終端を識別するために使用される区切り記号。

[Customize] (カスタマイズ)

位置ファイルのデータ形式をカスタマイズし、テーブルカラムを定義するには、このチェックボックスをオンにします。

Column (カラム): カスタマイズするカラムを選択します。

[Size] (サイズ): カラムのサイズを入力します。

[Padding char] (埋め込み文字): 二重引用符の間に、フィールドから削除する必要のある埋め込み文字を入力します。デフォルトの埋め込み文字はスペースです。

[Alignment] (整列): 適切な整列パラメーターを選択します。

[Pattern] (パターン)

長さの値はコンマで区切られ、引用符で囲まれた文字列として解釈されます。このフィールドに入力された値が、定義されたスキーマと一貫していることをご確認ください。

[Header] (ヘッダー)

ファイルの先頭でスキップする行の数を入力します。

たとえば、0を入力すると、ヘッダー行を無視する設定になり、最初の行にヘッダーが含まれるデータの場合は1をセットします。

[Skip empty rows] (空の行をスキップ)

このチェックボックスをオンにすると、空の行はスキップされます。

詳細設定

[Custom Encoding] (カスタムエンコーディング)

保管データを処理する際、エンコーディングの問題が発生することがあります。このような場合は、チェックボックスをオンにして[Encoding] (エンコーディング)リストを表示します。

リストからエンコーディングを選択するか、[CUSTOM] (カスタム)を選択して、手動で定義します。

[Advanced separator (for number)] (高度な区切り文字:数値)

数値に使用する区切り記号を変更するには、このチェックボックスをオンにします。デフォルトでは、桁区切り記号はコンマ(,)で、小数点区切り記号はピリオド(.)です。

[Trim column] (カラムをトリミング)

このチェックボックスをオンにすると、先行ホワイトスペースおよび後続ホワイトスペースがすべてのカラムから削除されます。このチェックボックスをオフにすると、[Check column to trim] (トリミングするカラムの確認)テーブルが表示され、トリミングする特定のカラムを選択できます。

使用方法

使用ルール

このコンポーネントは開始コンポーネントとして使用され、出力リンクを必要とします。

このコンポーネントは、所属するSpark Streamingコンポーネントのパレットと共に、Spark Streamingジョブを作成している場合にだけ表示されます。

特に明記していない限り、このドキュメントのシナリオでは、[Standard] (標準)ジョブ、つまり従来の Talend データ統合ジョブだけを扱います。

[Spark Connection] (Spark接続)

[Run] (実行)ビューの[Spark Configuration] (Spark設定)タブで、ジョブ全体でのSparkクラスターへの接続を定義します。また、ジョブでは、依存jarファイルを実行することを想定しているため、Sparkがこれらのjarファイルにアクセスできるように、これらのファイルの転送先にするファイルシステム内のディレクトリーを指定する必要があります。
  • Yarnモード(YarnクライアントまたはYarnクラスター):
    • Google Dataprocを使用している場合、[Spark configuration] (Spark設定)タブの[Google Storage staging bucket] (Google Storageステージングバケット)フィールドにバケットを指定します。

    • HDInsightを使用している場合、[Spark configuration] (Spark設定)タブの[Windows Azure Storage configuration] (Windows Azure Storage設定)エリアでジョブのデプロイメントに使用するブロブを指定します。

    • Altusを使用する場合は、[Spark configuration] (Spark設定)タブでジョブのデプロイにS3バケットまたはAzure Data Lake Storageを指定します。
    • Quboleを使用する場合は、ジョブにtS3Configurationを追加し、QuboleでS3システム内に実際のビジネスデータを書き込みます。tS3Configurationを使用しないと、このビジネスデータはQubole HDFSシステムに書き込まれ、クラスターをシャットダウンすると破棄されます。
    • オンプレミスのディストリビューションを使用する場合は、クラスターで使用されているファイルシステムに対応する設定コンポーネントを使用します。一般的に、このシステムはHDFSになるため、tHDFSConfigurationを使用します。

  • [Standalone mode] (スタンドアロンモード): tHDFSConfigurationまたはtS3Configurationなど、クラスターで使用されているファイルシステムに対応する設定コンポーネントを使用します。

    ジョブ内に設定コンポーネントがない状態でDatabricksを使用している場合、ビジネスデータはDBFS (Databricks Filesystem)に直接書き込まれます。

この接続は、ジョブごとに有効になります。