Apache Spark StreamingのtReplaceプロパティ - 7.3

処理(インテグレーション)

Version
7.3
Language
日本語 (日本)
Product
Talend Big Data
Talend Big Data Platform
Talend Data Fabric
Talend Data Integration
Talend Data Management Platform
Talend Data Services Platform
Talend ESB
Talend MDM Platform
Talend Open Studio for Big Data
Talend Open Studio for Data Integration
Talend Open Studio for ESB
Talend Real-Time Big Data Platform
Module
Talend Studio
Content
ジョブデザインと開発 > サードパーティーシステム > 変換処理コンポーネント
データガバナンス > サードパーティーシステム > 変換処理コンポーネント
データクオリティとプレパレーション > サードパーティーシステム > 変換処理コンポーネント

このプロパティは、Spark Streamingジョブフレームワークで実行されるtReplaceの設定で使用します。

Spark StreamingtReplaceコンポーネントは変換処理ファミリーのコンポーネントです。

このコンポーネントは、Talend Real Time Big Data PlatformおよびTalend Data Fabricで使用できます。

基本設定

[Schema] (スキーマ)および[Edit Schema] (スキーマを編集) (スキーマを編集)

スキーマとは行の説明のことです。処理して次のコンポーネントに渡すフィールド(カラム)数を定義します。Sparkジョブを作成する場合、フィールドの命名時は予約語のlineを避けます。

スキーマを変更するには[Edit schema] (スキーマを編集)をクリックします。現在のスキーマがリポジトリータイプの場合は、3つのオプションを使用できます。

  • [View schema] (スキーマの表示): スキーマのみを表示する場合は、このオプションを選択します。

  • [Change to built-in property] (組み込みのプロパティに変更): ローカルで変更を行うためにスキーマを組み込みに変更する場合は、このオプションを選択します。

  • [Update repository connection] (リポジトリー接続を更新): リポジトリーに保存されているスキーマに変更を加え、変更後にそのコンテンツをすべてのジョブにプロパゲートするかどうかを決める場合は、このオプションを選択します。変更を現在のジョブにのみ反映する場合は、変更後、[No] (いいえ)を選択し、[Repository Content] (リポジトリーのコンテンツ)ウィンドウで再びこのスキーマのメタデータを選択します。

 

[Built-in] (組み込み): そのコンポーネントのみのスキーマを作成して、ローカルに保存します。

 

[Repository] (リポジトリー): スキーマは作成済みで、リポジトリーに保管されています。さまざまなプロジェクトやジョブデザインで再利用できます。

[Simple Mode Search / Replace] (単純モード検索/置換)

ボタンをクリックし、必要な数の条件を追加します。条件は、各行に順次実行されます。

[Input column] (入力カラム): 検索と置換の対象とするスキーマのカラムを選択します。

[Search] (検索): 検索する値を入力カラムに入力します。

[Replace with] (置換): 代替値を入力します。

[Whole word] (単語全体): 検索の値を全体で考慮する必要がある場合は、このチェックボックスをオンにします。

[Case sensitive] (大文字小文字が区別される): 大文字と小文字を区別する場合は、このチェックボックスをオンにします。

これらのカラムでは正規表現は使用できません。

[Advanced mode] (上級モード)

単純モードでは実行できないオペレーションを行う場合は、このチェックボックスをオンにします。必要に応じてテキストフィールドに正規表現を入力します。

使用方法

使用ルール

このコンポーネントは中間ステップとして使用されます。

このコンポーネントは、所属するSpark Streamingコンポーネントのパレットと共に、Spark Streamingジョブを作成している場合にだけ表示されます。

特に明記していない限り、このドキュメントのシナリオでは、[Standard] (標準)ジョブ、つまり従来の Talend データ統合ジョブだけを扱います。

[Spark Connection] (Spark接続)

[Run] (実行)ビューの[Spark Configuration] (Spark設定)タブで、ジョブ全体でのSparkクラスターへの接続を定義します。また、ジョブでは、依存jarファイルを実行することを想定しているため、Sparkがこれらのjarファイルにアクセスできるように、これらのファイルの転送先にするファイルシステム内のディレクトリーを指定する必要があります。
  • Yarnモード(YarnクライアントまたはYarnクラスター):
    • Google Dataprocを使用している場合、[Spark configuration] (Spark設定)タブの[Google Storage staging bucket] (Google Storageステージングバケット)フィールドにバケットを指定します。

    • HDInsightを使用している場合、[Spark configuration] (Spark設定)タブの[Windows Azure Storage configuration] (Windows Azure Storage設定)エリアでジョブのデプロイメントに使用するブロブを指定します。

    • Altusを使用する場合は、[Spark configuration] (Spark設定)タブでジョブのデプロイにS3バケットまたはAzure Data Lake Storageを指定します。
    • Quboleを使用する場合は、ジョブにtS3Configurationを追加し、QuboleでS3システム内に実際のビジネスデータを書き込みます。tS3Configurationを使用しないと、このビジネスデータはQubole HDFSシステムに書き込まれ、クラスターをシャットダウンすると破棄されます。
    • オンプレミスのディストリビューションを使用する場合は、クラスターで使用されているファイルシステムに対応する設定コンポーネントを使用します。一般的に、このシステムはHDFSになるため、tHDFSConfigurationを使用します。

  • [Standalone mode] (スタンドアロンモード): tHDFSConfigurationまたはtS3Configurationなど、クラスターで使用されているファイルシステムに対応する設定コンポーネントを使用します。

    ジョブ内に設定コンポーネントがない状態でDatabricksを使用している場合、ビジネスデータはDBFS (Databricks Filesystem)に直接書き込まれます。

この接続は、ジョブごとに有効になります。