Apache Spark StreamingのtWriteXMLFieldsプロパティ - 7.3

処理(インテグレーション)

Version
7.3
Language
日本語 (日本)
Product
Talend Big Data
Talend Big Data Platform
Talend Data Fabric
Talend Data Integration
Talend Data Management Platform
Talend Data Services Platform
Talend ESB
Talend MDM Platform
Talend Open Studio for Big Data
Talend Open Studio for Data Integration
Talend Open Studio for ESB
Talend Real-Time Big Data Platform
Module
Talend Studio
Content
ジョブデザインと開発 > サードパーティーシステム > 変換処理コンポーネント
データガバナンス > サードパーティーシステム > 変換処理コンポーネント
データクオリティとプレパレーション > サードパーティーシステム > 変換処理コンポーネント

このプロパティはSpark Streamingジョブフレームワークで実行されているtWriteXMLFieldsを設定するために使います。

Spark Streaming tWriteXMLFieldsコンポーネントは変換処理ファミリーのコンポーネントです。

このコンポーネントのストリーミングバージョンは、Talend Real Time Big Data PlatformおよびTalend Data Fabricで使用できます。

基本設定

[Output type] (出力タイプ)

対象ファイルに出力するデータの種類を選択します。[byte] (バイト)を選択すると、データはバイト配列になります。

Schema (スキーマ)およびEdit schema (スキーマを編集)

スキーマとは行の説明のことです。処理して次のコンポーネントに渡すフィールド(カラム)数を定義します。Sparkジョブを作成する場合、フィールドの命名時は予約語のlineを避けます。

このコンポーネントのスキーマは読み取り専用です。[Edit schema] (スキーマを編集)をクリックすると、スキーマを表示できます。

出力タイプがString (文字列)の場合、読み取り専用の単一カラムはmessageContentになります。このカラムは、tJMSOutputなどの出力コンポーネントに文字列を提供します。

出力タイプが[byte] (バイト)の場合、読み取り専用の単一カラムはserializedValueになります。このカラムは、tKafkaOutputなどの出力コンポーネントにバイト配列を提供します。

出力スキーマと読み取り専用カラムは、Row (行) > Output(出力)リンクから同じジョブの続くコンポーネントをクリックすると表示されます。[Component] (コンポーネント)ビューの[Basic settings] (基本設定)タブにスキーマが表示されます。

[Row tag] (行タグ)

行ごとにデータと構造をラップするタグを指定します。

[Custom encoding] (カスタムエンコーディング)

保管データを処理する際、エンコーディングの問題が発生することがあります。このような場合は、チェックボックスをオンにして[Encoding] (エンコーディング)リストを表示します。

リストからエンコーディングを選択するか、[CUSTOM] (カスタム)を選択して、手動で定義します。このフィールドはデータベースデータ処理の必須フィールドです。サポートされるエンコーディングは、使用しているJVMに応じて異なります。詳細は、https://docs.oracle.comを参照してください。

詳細設定

[Root tags] (ルートタグ)

数値に使用する区切り記号を変更するには、このチェックボックスをオンにします。デフォルトでは、桁区切り記号はコンマ(,)で、小数点区切り記号はピリオド(.)です。

Output format (出力形式)

出力フォーマットを定義します。

  • [Column] (カラム): 入力スキーマから取得されたカラム。

  • [As attribute] (属性として): XML出力で親エレメントの属性として使うカラムのチェックボックスをオンにします。

注:

同じカラムが[Output format] (出力フォーマット)テーブルで属性として、[Use dynamic grouping] (動的グループ化の使用)設定で動的グループ化の条件として、その両方で選択されている場合、そのカラムには動的グループ設定のみが有効になります。

[Use schema column name] (スキーマカラム名を使用): デフォルトでは、このチェックボックスはすべてのカラムに対してオンになっているため、入力スキーマのカラムラベルがデータラッピングタグとして使われます。カラムの入力スキーマとは異なるタグを使う場合は、そのカラムのこのチェックボックスをオフにし、[Label] (ラベル)フィールドで引用符の間にタグラベルを指定します。

[Use dynamic grouping] (動的グループ化を使う)

出力カラムを動的にグループ化する場合は、このチェックボックスをオンにします。[+]ボタンをクリックして、1つ以上のグループ化基準を[Group by] (分類基準)テーブルに追加します。

[Column] (カラム): グループ化された出力行のラップエレメントとして使うカラムを選択します。

[Attribute] (属性ラベル): グループラップエレメントの属性ラベルを引用符の間に入力します。

使用方法

使用ルール

このコンポーネントは中間ステップとして使用されます。

このコンポーネントは、所属するSpark Streamingコンポーネントのパレットと共に、Spark Streamingジョブを作成している場合にだけ表示されます。

特に明記していない限り、このドキュメントのシナリオでは、[Standard] (標準)ジョブ、つまり従来の Talend データ統合ジョブだけを扱います。

[Spark Connection] (Spark接続)

[Run] (実行)ビューの[Spark Configuration] (Spark設定)タブで、ジョブ全体でのSparkクラスターへの接続を定義します。また、ジョブでは、依存jarファイルを実行することを想定しているため、Sparkがこれらのjarファイルにアクセスできるように、これらのファイルの転送先にするファイルシステム内のディレクトリーを指定する必要があります。
  • Yarnモード(YarnクライアントまたはYarnクラスター):
    • Google Dataprocを使用している場合、[Spark configuration] (Spark設定)タブの[Google Storage staging bucket] (Google Storageステージングバケット)フィールドにバケットを指定します。

    • HDInsightを使用している場合、[Spark configuration] (Spark設定)タブの[Windows Azure Storage configuration] (Windows Azure Storage設定)エリアでジョブのデプロイメントに使用するブロブを指定します。

    • Altusを使用する場合は、[Spark configuration] (Spark設定)タブでジョブのデプロイにS3バケットまたはAzure Data Lake Storageを指定します。
    • Quboleを使用する場合は、ジョブにtS3Configurationを追加し、QuboleでS3システム内に実際のビジネスデータを書き込みます。tS3Configurationを使用しないと、このビジネスデータはQubole HDFSシステムに書き込まれ、クラスターをシャットダウンすると破棄されます。
    • オンプレミスのディストリビューションを使用する場合は、クラスターで使用されているファイルシステムに対応する設定コンポーネントを使用します。一般的に、このシステムはHDFSになるため、tHDFSConfigurationを使用します。

  • [Standalone mode] (スタンドアロンモード): tHDFSConfigurationまたはtS3Configurationなど、クラスターで使用されているファイルシステムに対応する設定コンポーネントを使用します。

    ジョブ内に設定コンポーネントがない状態でDatabricksを使用している場合、ビジネスデータはDBFS (Databricks Filesystem)に直接書き込まれます。

この接続は、ジョブごとに有効になります。