Apache Spark StreamingのtFileInputRegexプロパティ - 7.3

正規表現

Version
7.3
Language
日本語 (日本)
Product
Talend Big Data
Talend Big Data Platform
Talend Data Fabric
Talend Data Integration
Talend Data Management Platform
Talend Data Services Platform
Talend ESB
Talend MDM Platform
Talend Open Studio for Big Data
Talend Open Studio for Data Integration
Talend Open Studio for ESB
Talend Real-Time Big Data Platform
Module
Talend Studio
Content
ジョブデザインと開発 > サードパーティーシステム > ファイルコンポーネント > 正規表現
データガバナンス > サードパーティーシステム > ファイルコンポーネント > 正規表現
データクオリティとプレパレーション > サードパーティーシステム > ファイルコンポーネント > 正規表現

これらのプロパティを使って、Spark Streamingジョブフレームワーク内で実行されているtFileInputRegexを設定します。

Spark StreamingtFileInputRegexコンポーネントはファイルファミリーのコンポーネントです。

このコンポーネントは、Talend Real Time Big Data PlatformおよびTalend Data Fabricで使用できます。

基本設定

[Define a storage configuration component] (ストレージ設定コンポーネントを定義)

HDFSなどのターゲットファイルシステムへの接続の設定情報を提供するために使用する設定コンポーネントを選択します。

このチェックボックスをオフにすると、ターゲットファイルシステムはローカルシステムになります。

使用する接続設定は同じジョブ内にあることが必要です。たとえば、tHDFSConfigurationコンポーネントをジョブにドロップした場合は、このコンポーネントを選択して、所定のHDFSシステム内で結果を書き込むことができます。

[Property type] (プロパティタイプ)

[Built-In] (組み込み)または[Repository] (リポジトリー)のいずれか。

 

[Built-In] (組み込み): プロパティデータは一元的に保存されません。

 

[Repository] (リポジトリー): プロパティを保存するリポジトリーファイルを選択します。

[Folder/File] (フォルダー/ファイル)

ファイルシステムで使用するデータを参照するか、パスを入力します。

設定したパスがフォルダーを指す場合、このコンポーネントによりフォルダーに保管されているすべてのファイル(/user/talend/inなど)が読み取られます。サブフォルダーが存在する場合、[Spark configuration] (Spark設定)タブの[Advanced properties] (詳細プロパティ)テーブルでプロパティspark.hadoop.mapreduce.input.fileinputformat.input.dir.recursivetrueに設定しない限り、サブフォルダーは自動的に無視されます。
  • 使用するファイルシステムに応じて、ジョブに配置されたHDFS向けtHDFSConfigurationコンポーネント、S3向けtS3Configurationコンポーネント、Azure StorageおよびAzure Data Lake Storage向けtAzureFSConfigurationなど、対応する設定コンポーネントを適切に設定します。

このフィールドに複数のファイルまたはディレクトリーを指定する場合は、パスをそれぞれコンマ(,)で区切ります。

読み込むファイルが圧縮されている場合は、拡張子を付けてファイル名を入力します。するとttFileInputRegexは実行時に自動的に解凍します。サポートされている圧縮形式と対応する拡張子は次のとおりです。

  • DEFLATE: *.deflate

  • gzip: *.gz

  • bzip2: *.bz2

  • LZO: *.lzo

参照用のボタンはSpark Localモードでは機能しません。お使いのディストリビューションでStudioがサポートしているその他のSpark Yarnモードを使用している場合は、同じジョブ内の設定コンポーネント(tHDFSConfigurationなど)で接続を適切に設定したことを確認する必要があります。使用されるファイルシステムに応じて設定コンポーネントを使用します。

[Row separator] (行区切り)

行の終端を識別するために使用される区切り記号。

正規表現

このフィールドには複数の行を含めることができます。抽出するフィールドに一致するサブパターンを含む正規表現を入力します。

[Note] (注): 正規表現ではアンチェラッシュを2倍にする必要があります

警告:

正規表現構文には二重引用符が必要です。

Header (ヘッダー)

ファイルの先頭でスキップする行の数を入力します。

[Schema] (スキーマ)[Edit schema] (スキーマを編集)

スキーマを変更するには[Edit schema] (スキーマを編集)をクリックします。現在のスキーマがリポジトリータイプの場合は、3つのオプションを使用できます。

  • [View schema] (スキーマの表示): スキーマのみを表示する場合は、このオプションを選択します。

  • [Change to built-in property] (組み込みのプロパティに変更): ローカルで変更を行うためにスキーマを組み込みに変更する場合は、このオプションを選択します。

  • [Update repository connection] (リポジトリー接続を更新): リポジトリーに保存されているスキーマに変更を加え、変更後にそのコンテンツをすべてのジョブにプロパゲートするかどうかを決める場合は、このオプションを選択します。変更を現在のジョブにのみ反映する場合は、変更後、[No] (いいえ)を選択し、[Repository Content] (リポジトリーのコンテンツ)ウィンドウで再びこのスキーマのメタデータを選択します。

 

[Built-in] (組み込み): そのコンポーネントのみのスキーマを作成して、ローカルに保存します。

 

[Repository] (リポジトリー): スキーマは作成済みで、リポジトリーに保管されています。さまざまなプロジェクトやジョブデザインで再利用できます。

[Skip empty rows] (空の行をスキップ)

このチェックボックスをオンにすると、空の行はスキップされます。

Die on error (エラー発生時に強制終了)

このチェックボックスをオンにすると、エラー発生時にジョブの実行が停止されます。

詳細設定

[Set minimum partitions] (最小パーティションを設定)

このチェックボックスをオンにすると、Sparkのデフォルトのパーティション分割動作により入力データから作成されるパーティションの数を制御できます。

表示されたフィールドに、取得するパーティションの最小数を引用符なしで入力します。

一般に、パーティション数の制御においては、少なくとも並列処理を実行するパーティションの数を設定できますが、利用可能なメモリ容量およびネットワークのデータ転送負荷を考慮する必要があります。

Encoding (エンコーディング)

保管データを処理する際、エンコーディングの問題が発生することがあります。このような場合は、チェックボックスをオンにして[Encoding] (エンコーディング)リストを表示します。

リストからエンコーディングを選択するか、[CUSTOM] (カスタム)を選択して、手動で定義します。

使用方法

使用ルール

このコンポーネントは開始コンポーネントとして使用され、出力リンクを必要とします。

このコンポーネントは、tMapコンポーネントのメインフローのルックアップフロー(結合操作の右側)を提供する目的でのみ使用されます。このような状況では、このtMapによって使用されるルックアップモデルは、1回限り読み込まれる必要があります。

このコンポーネントは、所属するSpark Streamingコンポーネントのパレットと共に、Spark Streamingジョブを作成している場合にだけ表示されます。

特に明記していない限り、このドキュメントのシナリオでは、[Standard] (標準)ジョブ、つまり従来の Talend データ統合ジョブだけを扱います。

[Spark Connection] (Spark接続)

[Run] (実行)ビューの[Spark Configuration] (Spark設定)タブで、ジョブ全体でのSparkクラスターへの接続を定義します。また、ジョブでは、依存jarファイルを実行することを想定しているため、Sparkがこれらのjarファイルにアクセスできるように、これらのファイルの転送先にするファイルシステム内のディレクトリーを指定する必要があります。
  • Yarnモード(YarnクライアントまたはYarnクラスター):
    • Google Dataprocを使用している場合、[Spark configuration] (Spark設定)タブの[Google Storage staging bucket] (Google Storageステージングバケット)フィールドにバケットを指定します。

    • HDInsightを使用している場合、[Spark configuration] (Spark設定)タブの[Windows Azure Storage configuration] (Windows Azure Storage設定)エリアでジョブのデプロイメントに使用するブロブを指定します。

    • Altusを使用する場合は、[Spark configuration] (Spark設定)タブでジョブのデプロイにS3バケットまたはAzure Data Lake Storageを指定します。
    • Quboleを使用する場合は、ジョブにtS3Configurationを追加し、QuboleでS3システム内に実際のビジネスデータを書き込みます。tS3Configurationを使用しないと、このビジネスデータはQubole HDFSシステムに書き込まれ、クラスターをシャットダウンすると破棄されます。
    • オンプレミスのディストリビューションを使用する場合は、クラスターで使用されているファイルシステムに対応する設定コンポーネントを使用します。一般的に、このシステムはHDFSになるため、tHDFSConfigurationを使用します。

  • [Standalone mode] (スタンドアロンモード): tHDFSConfigurationまたはtS3Configurationなど、クラスターで使用されているファイルシステムに対応する設定コンポーネントを使用します。

    ジョブ内に設定コンポーネントがない状態でDatabricksを使用している場合、ビジネスデータはDBFS (Databricks Filesystem)に直接書き込まれます。

この接続は、ジョブごとに有効になります。