Apache Spark BatchのtKuduConfigurationプロパティ - Cloud - 8.0

Kudu

Version
Cloud
8.0
Language
日本語
Product
Talend Big Data
Talend Big Data Platform
Talend Data Fabric
Talend Data Integration
Talend Data Management Platform
Talend Data Services Platform
Talend ESB
Talend MDM Platform
Talend Real-Time Big Data Platform
Module
Talend Studio
Content
ジョブデザインと開発 > サードパーティーシステム > DBコンポーネント > Kudu
データガバナンス > サードパーティーシステム > DBコンポーネント > Kudu
データクオリティとプレパレーション > サードパーティーシステム > DBコンポーネント > Kudu

これらのプロパティは、Spark Batchジョブのフレームワークで実行されているtKuduConfigurationを設定するために使われます。

Spark BatchtKuduConfigurationコンポーネントは、ストレージファミリーとデータベースファミリーに属しています。

このフレームワーク内のコンポーネントは、ビッグデータ対応のサブスクリプションTalend 製品すべて、およびTalend Data Fabricで利用できます。

基本設定

[Server connection] (サーバー接続)

[+]ボタンをクリックして、使う必要があるKuduマスターと同じ数の行を追加します。各行はマスター用です。

次に、使うKuduサービスのマスターノードの場所とリスニングポートを入力します。

このコンポーネントは、ClouderaにインストールされたApache Kuduサービスのみをサポートします。

Apache KuduとClouderaの間の互換性情報については、Clouderaの関連ドキュメンテーション(Compatibility Matrix for Apache Kudu)をご覧ください。

使用方法

使用ルール

このコンポーネントは、他のコンポーネントに接続せずに使用されます。

Cloudera Kuduクラスターに接続する必要がある場合のみ使ってください。

[Spark Connection] (Spark接続)

[Run] (実行)ビューの[Spark configuration] (Spark設定)タブで、ジョブ全体でのSparkクラスターへの接続を定義します。また、ジョブでは、依存jarファイルを実行することを想定しているため、Sparkがこれらのjarファイルにアクセスできるように、これらのファイルの転送先にするファイルシステム内のディレクトリーを指定する必要があります。
  • Yarnモード(YarnクライアントまたはYarnクラスター):
    • Google Dataprocを使用している場合、[Spark configuration] (Spark設定)タブの[Google Storage staging bucket] (Google Storageステージングバケット)フィールドにバケットを指定します。

    • HDInsightを使用している場合、[Spark configuration] (Spark設定)タブの[Windows Azure Storage configuration] (Windows Azure Storage設定)エリアでジョブのデプロイメントに使用するブロブを指定します。

    • Altusを使用する場合は、[Spark configuration] (Spark設定)タブでジョブのデプロイにS3バケットまたはAzure Data Lake Storageを指定します。
    • オンプレミスのディストリビューションを使用する場合は、クラスターで使用されているファイルシステムに対応する設定コンポーネントを使用します。一般的に、このシステムはHDFSになるため、https://help.talend.com/access/sources/content/topic?pageid=thdfsconfiguration&mapid=hdfs&afs:lang=ja&EnrichVersion=8.0を使用します。

  • [Standalone mode] (スタンドアロンモード): tHDFSConfigurationtS3Configurationなど、クラスターで使われているファイルシステムに対応する設定コンポーネントを使用します。

    ジョブ内に設定コンポーネントがない状態でDatabricksを使用している場合、ビジネスデータはDBFS (Databricks Filesystem)に直接書き込まれます。

この接続は、ジョブごとに有効になります。