Apache Spark StreamingのtMapRStreamsOutputプロパティ - Cloud - 8.0

MapRStreams

Version
Cloud
8.0
Language
日本語 (日本)
Product
Talend Big Data
Talend Big Data Platform
Talend Data Fabric
Talend Open Studio for Big Data
Talend Real-Time Big Data Platform
Module
Talend Studio
Content
ジョブデザインと開発 > サードパーティーシステム > メッセージングコンポーネント > MapRStreams
データガバナンス > サードパーティーシステム > メッセージングコンポーネント > MapRStreams
データクオリティとプレパレーション > サードパーティーシステム > メッセージングコンポーネント > MapRStreams

このプロパティはSpark Streamingジョブフレームワークで実行されているtMapRStreamsOutputを設定するために使います。

Spark Streaming tMapRStreamsOutputコンポーネントは、メッセージングファミリーに属しています。

このコンポーネントは、Talend Real Time Big Data PlatformおよびTalend Data Fabricで使用できます。

基本設定

[Schema] (スキーマ)[Edit schema] (スキーマを編集)

スキーマとは行の説明のことです。処理して次のコンポーネントに渡すフィールド(カラム)数を定義します。Sparkジョブを作成する場合、フィールドの命名時は予約語のlineを避けます。

このコンポーネントのスキーマは読み取り専用です。公開するメッセージを保管します。

トピック名

メッセージを公開するトピックの名前を入力します。このトピックは既に存在している必要があります。このトピックが属するストリームの名前を入力する必要があります。構文はpath_to_the_stream:topic_nameです。

[Compress the data] (データを圧縮)

[Compress the data] (データの圧縮)チェックボックスをオンにすると、出力データが圧縮されます。

詳細設定

[Producer properties] (プロデューサープロパティ)

カスタマイズする必要があるMapR Streamsプロデューサープロパティをこのテーブルに追加します。

このテーブルで定義できるプロデューサー設定の詳細は、MapRドキュメンテーションのMapR Streamsの概要で、MapR Streamsの重要なプロデューサー設定プロパティを説明しているセクションを参照してください。

[Connection pool] (接続プール)

このエリアでは、各Sparkエグゼキューターに、同時に開いたままにする接続の数を制御するための接続プールを設定します。以下の接続プールパラメーターに与えられているデフォルト値は、ほとんどのユースケースでそのまま使用できます。

  • [Max total number of connections] (接続の最大合計数): 同時に開いたままにしておくことができる接続(アイドルまたはアクティブ)の最大数を入力します。

    デフォルトの数は8です。-1を入力すると、同時に開いておける接続の数が無制限となります。

  • [Max waiting time (ms)] (最大待機時間(ミリ秒)): 接続使用の要求に対して接続プールからレスポンスが返されるまでの最大待機時間を入力します。デフォルトでは-1(無制限)となっています。

  • [Min number of idle connections] (アイドル接続の最小数): 接続プール内に維持されるアイドル接続(使用されていない接続)の最小数を入力します。

  • [Max number of idle connections] (アイドル接続の最大数): 接続プール内に維持されるアイドル接続(使用されていない接続)の最大数を入力します。

[Evict connections] (接続の無効化)

接続プール内の接続を破棄する条件を定義するには、このチェックボックスをオンにします。オンにすると、以下のフィールドが表示されます。

  • [Time between two eviction runs] (2つの削除実行の間隔): コンポーネントが接続のステータスを確認し、アイドル状態の接続を破棄するまでの間隔(ミリ秒)を入力します。

  • [Min idle time for a connection to be eligible to eviction] (接続が削除可能になるまでの最小アイドル時間): アイドル接続が破棄されるまでの間隔(ミリ秒)を入力します。

  • [Soft min idle time for a connection to be eligible to eviction] (接続が削除可能になるまでのソフト最小アイドル時間): このパラメーターの機能は[Min idle time for a connection to be eligible to eviction] (接続が削除可能になるまでの最小アイドル時間)と同じですが、[Min number of idle connections] (アイドル接続の最小数)フィールドで定義したアイドル接続の最小数が維持されます。

使用方法

使用ルール

このコンポーネントは終了コンポーネントとして使用され、入力リンクを必要とします。

このコンポーネントがシリアライズされたデータを送信するには、入力スキーマにserializedValueカラムを定義するためにtWriteJSONFieldなどの書き込みコンポーネントを必要とします。

[Spark Connection] (Spark接続)

[Run] (実行)ビューの[Spark Configuration] (Spark設定)タブで、ジョブ全体でのSparkクラスターへの接続を定義します。また、ジョブでは、依存jarファイルを実行することを想定しているため、Sparkがこれらのjarファイルにアクセスできるように、これらのファイルの転送先にするファイルシステム内のディレクトリーを指定する必要があります。
  • Yarnモード(YarnクライアントまたはYarnクラスター):
    • Google Dataprocを使用している場合、[Spark configuration] (Spark設定)タブの[Google Storage staging bucket] (Google Storageステージングバケット)フィールドにバケットを指定します。

    • HDInsightを使用している場合、[Spark configuration] (Spark設定)タブの[Windows Azure Storage configuration] (Windows Azure Storage設定)エリアでジョブのデプロイメントに使用するブロブを指定します。

    • Altusを使用する場合は、[Spark configuration] (Spark設定)タブでジョブのデプロイにS3バケットまたはAzure Data Lake Storageを指定します。
    • Quboleを使用する場合は、ジョブにtS3Configurationを追加し、QuboleでS3システム内に実際のビジネスデータを書き込みます。tS3Configurationを使用しないと、このビジネスデータはQubole HDFSシステムに書き込まれ、クラスターをシャットダウンすると破棄されます。
    • オンプレミスのディストリビューションを使用する場合は、クラスターで使用されているファイルシステムに対応する設定コンポーネントを使用します。一般的に、このシステムはHDFSになるため、tHDFSConfigurationを使用します。

  • [Standalone mode] (スタンドアロンモード): tHDFSConfigurationtS3Configurationなど、クラスターで使われているファイルシステムに対応する設定コンポーネントを使用します。

    ジョブ内に設定コンポーネントがない状態でDatabricksを使用している場合、ビジネスデータはDBFS (Databricks Filesystem)に直接書き込まれます。

この接続は、ジョブごとに有効になります。

前提条件

Talend Studio との操作を確実に行うには、Hadoopディストリビューションを適切にインストールする必要があります。以下のリストに、MapR関連の情報などを示します。

  • MapRクライアントは必ずStudioのあるマシンにインストールして、そのマシンのPATH変数にMapRクライアントライブラリーを追加します。MapRのドキュメンテーションによると、各OSバージョンに対応するMapRクライアントのライブラリーは、MAPR_INSTALL\ hadoop\hadoop-VERSION\lib\nativeにあるとされています。たとえば、Windows版のライブラリーは、\lib\native\MapRClient.dllにあるMapRクライアントのjarファイルにあります。詳細は、MapRからhttp://www.mapr.com/blog/basic-notes-on-configuring-eclipse-as-a-hadoop-development-environment-for-maprを参照してください。

    指定のライブラリーを追加しないと、no MapRClient in java.library.pathというエラーが発生する可能性があります。

  • たとえば、[Window] (ウィンドウ)メニューの[Preferences] (環境設定)ダイアログボックスにある[Run/Debug] (実行/デバッグ)ビューの[Job Run VM arguments] (ジョブ実行VMの引数)エリアで、-Djava.library.path引数を設定します。この引数により、そのMapRクライアントのネイティブライブラリーへのパスがStudioに渡されるので、サブスクリプションベースのユーザーはデータビューアーをフルに活用して、MapRに保存されたデータをStudioでローカルに表示できます。

Hadoopディストリビューションのインストール方法の詳細は、使用しているHadoopディストリビューションに対応するマニュアルを参照してください。