Apache Spark BatchのtUniteプロパティ - Cloud - 8.0

Orchestration (インテグレーション)

Version
Cloud
8.0
Language
日本語
Product
Talend Big Data
Talend Big Data Platform
Talend Data Fabric
Talend Data Integration
Talend Data Management Platform
Talend Data Services Platform
Talend ESB
Talend MDM Platform
Talend Real-Time Big Data Platform
Module
Talend Studio
Content
ジョブデザインと開発 > サードパーティーシステム > プロセス制御コンポーネント
データガバナンス > サードパーティーシステム > プロセス制御コンポーネント
データクオリティとプレパレーション > サードパーティーシステム > プロセス制御コンポーネント
Last publication date
2024-03-07

これらのプロパティは、Spark Batchジョブのフレームワークで実行されているtUniteを設定するために使われます。

Spark BatchtUniteコンポーネントは、オーケストレーション化ファミリーに属しています。

このフレームワークのコンポーネントは、すべてのサブスクリプションベースのビッグデータ対応のTalend製品およびTalend Data Fabricで使用できます。

基本設定

[Schema] (スキーマ)[Edit schema] (スキーマを編集)

スキーマとは行の説明で、処理された後に次のコンポーネントに渡されるフィールドの数を定義するものです。スキーマは[Built-in] (組み込み)か、[Repository] (リポジトリー)にリモートで保存されます。

スキーマを変更するには[Edit schema] (スキーマを編集)をクリックします。現在のスキーマがリポジトリータイプの場合は、3つのオプションを利用できます。

  • [View schema] (スキーマを表示): スキーマのみを表示する場合は、このオプションを選択します。

  • [Change to built-in property] (組み込みのプロパティに変更): ローカルで変更を行うためにスキーマを組み込みに変更する場合は、このオプションを選択します。

  • [Update repository connection] (リポジトリー接続をアップデート): リポジトリーに保存されているスキーマに変更を加え、変更後にそのコンテンツをすべてのジョブにプロパゲートするかどうかを決める場合は、このオプションを選択します。

    変更を現在のジョブにのみ反映する場合は、変更後、[No] (いいえ)を選択し、[Repository Content] (リポジトリーコンテンツ)ウィンドウで再びこのスキーマのメタデータを選択します。

ジョブ内の先行コンポーネントからスキーマを取得するためには、[Sync columns] (カラムを同期)をクリックします。

 

[Built-in] (組み込み): そのコンポーネントに対してのみスキーマを作成し、ローカルに保管します。

 

[Repository] (リポジトリー): スキーマは作成済みで、リポジトリーに保管されています。さまざまなプロジェクトやジョブデザインで再利用できます。

使用方法

使用ルール

このコンポーネントは中間ステップとして使用されます。

このコンポーネントは、所属するSpark Batchのコンポーネントのパレットと共に、Spark Batchジョブを作成している場合にだけ表示されます。

特に明記していない限り、このドキュメンテーションのシナリオでは、標準ジョブ、つまり従来の Talend Data Integrationジョブだけを扱います。

[Spark Connection] (Spark接続)

[Run] (実行)ビューの[Spark configuration] (Spark設定)タブで、ジョブ全体でのSparkクラスターへの接続を定義します。また、ジョブでは、依存jarファイルを実行することを想定しているため、Sparkがこれらのjarファイルにアクセスできるように、これらのファイルの転送先にするファイルシステム内のディレクトリーを指定する必要があります。
  • Yarnモード(YarnクライアントまたはYarnクラスター):
    • Google Dataprocを使用している場合、[Spark configuration] (Spark設定)タブの[Google Storage staging bucket] (Google Storageステージングバケット)フィールドにバケットを指定します。

    • HDInsightを使用している場合、[Spark configuration] (Spark設定)タブの[Windows Azure Storage configuration] (Windows Azure Storage設定)エリアでジョブのデプロイメントに使用するブロブを指定します。

    • Altusを使用する場合は、[Spark configuration] (Spark設定)タブでジョブのデプロイにS3バケットまたはAzure Data Lake Storageを指定します。
    • オンプレミスのディストリビューションを使用する場合は、クラスターで使われているファイルシステムに対応する設定コンポーネントを使用します。一般的に、このシステムはHDFSになるため、tHDFSConfigurationを使用します。

  • [Standalone mode] (スタンドアロンモード): クラスターで使われているファイルシステム(tHDFSConfiguration Apache Spark BatchtS3Configuration Apache Spark Batchなど)に対応する設定コンポーネントを使用します。

    ジョブ内に設定コンポーネントがない状態でDatabricksを使用している場合、ビジネスデータはDBFS (Databricks Filesystem)に直接書き込まれます。

この接続は、ジョブごとに有効になります。