Propriétés du tUniqRow pour Apache Spark Batch - 6.5

Deduplication

EnrichVersion
6.5
EnrichProdName
Talend Big Data
Talend Big Data Platform
Talend Data Fabric
Talend Data Integration
Talend Data Management Platform
Talend Data Services Platform
Talend ESB
Talend MDM Platform
Talend Open Studio for Big Data
Talend Open Studio for Data Integration
Talend Open Studio for ESB
Talend Open Studio for MDM
Talend Real-Time Big Data Platform
EnrichPlatform
Studio Talend
task
Création et développement > Systèmes tiers > Composants Data Quality > Composants de dédoublonnage
Gouvernance de données > Systèmes tiers > Composants Data Quality > Composants de dédoublonnage
Qualité et préparation de données > Systèmes tiers > Composants Data Quality > Composants de dédoublonnage

Ces propriétés sont utilisées pour configurer le tUniqRow s'exécutant dans le framework de Jobs Spark Batch.

Le composant tUniqRow Spark Batch appartient à la famille Processing.

Le composant de ce framework est disponible dans tous les produits Talend avec Big Data nécessitant une souscription et dans Talend Data Fabric.

Paramètres simples

Schema et Edit schema

Un schéma est une description de lignes. Il définit le nombre de champs (colonnes) dans le Repository. Lorsque vous créez un Job Spark, évitez le mot réservé line lors du nommage des champs.

Modifiez le schéma en cliquant sur Edit Schema. Si le schéma est en mode Repository, trois options sont disponibles :

  • View schema : sélectionnez cette option afin de voir uniquement le schéma.

  • Change to built-in property : sélectionnez cette option pour passer le schéma en mode Built-In et effectuer des modifications locales.

  • Update repository connection : sélectionnez cette option afin de modifier le schéma stocké dans le référentiel et décider de propager ou non les modifications à tous les Jobs. Si vous souhaitez propager les modifications uniquement au Job courant, cliquez sur No et sélectionnez à nouveau la métadonnée du schéma dans la fenêtre [Repository Content].

 

Built-in : le schéma est créé et conservé localement pour ce composant seulement.

 

Repository : le schéma existe déjà et est stocké dans le Repository. Ainsi, il peut être réutilisé dans des Job Designs et projets.

Unique key

Sélectionnez dans cette zone une ou plusieurs colonnes sur lesquelles le dédoublonnage sera effectué.

- Cochez la case Key attribute afin d'effectuer le dédoublonnage sur toutes les colonnes.

- Cochez la case Case sensitive afin de différencier les majuscules et les minuscules.

Paramètres avancés

Only once each duplicated key

Cochez cette case si vous souhaitez envoyer uniquement les premières entrées en doublon des colonnes définies comme clé(s) vers le flux de sortie des doublons.

Utilisation

Usage rule

Ce composant est utilisé comme étape intermédiaire.

Ce composant, ainsi que la Palette Spark Batch à laquelle il appartient, ne s'affiche que lorsque vous créez un Job Spark Batch.

Notez que, dans cette documentation, sauf mention contraire, un scénario présente uniquement des Jobs Standard, c'est-à-dire des Jobs Talend traditionnels d'intégration de données.

Spark Connection

Vous devez utiliser l'onglet Spark Configuration dans la vue Run afin de définir la connexion à un cluster Spark donné pour le Job entier. De plus, puisque le Job attend ses fichiers .jar dépendants pour l'exécution, vous devez spécifier le répertoire du système de fichiers dans lequel ces fichiers .jar sont transférés afin que Spark puisse accéder à ces fichiers :
  • Yarn mode  : lorsque vous utilisez Google Dataproc, spécifiez un bucket dans le champ Google Storage staging bucket de l'onglet Spark configuration. Lorsque vous utilisez d'autres distributions, utilisez un composant tHDFSConfiguration afin de spécifier le répertoire.

  • Standalone mode : vous devez choisir le composant de configuration selon le système de fichiers que vous utilisez, comme tHDFSConfiguration ou tS3Configuration.

Cette connexion fonctionne uniquement pour le Job dans lequel vous l'avez définie.