Propriétés du tFileOutputJSON pour Apache Spark Batch - 7.1

JSON

EnrichVersion
7.1
EnrichProdName
Talend Big Data
Talend Big Data Platform
Talend Data Fabric
Talend Data Integration
Talend Data Management Platform
Talend Data Services Platform
Talend ESB
Talend MDM Platform
Talend Open Studio for Big Data
Talend Open Studio for Data Integration
Talend Open Studio for ESB
Talend Open Studio for MDM
Talend Real-Time Big Data Platform
EnrichPlatform
Studio Talend
task
Création et développement > Systèmes tiers > Composants File (Intégration) > Composants JSON
Gouvernance de données > Systèmes tiers > Composants File (Intégration) > Composants JSON
Qualité et préparation de données > Systèmes tiers > Composants File (Intégration) > Composants JSON

Ces propriétés sont utilisées pour configurer le tFileOutputJSON s'exécutant dans le framework de Jobs Spark Batch.

Le composant tFileOutputJSON Spark Batch appartient à la famille File.

Le composant de ce framework est disponible dans tous les produits Talend avec Big Data nécessitant une souscription et dans Talend Data Fabric.

Basic settings

Define a storage configuration component

Sélectionnez le composant de configuration à utiliser pour fournir les informations de configuration pour la connexion au système de fichiers cible, comme HDFS.

Si vous laissez cette case décochée, le système de fichiers cible est le système local.

Le composant de configuration à utiliser doit se trouver dans le même Job. Par exemple, si vous avez ajouté un composant tHDFSConfiguration dans votre Job, vous pouvez le sélectionner pour écrire le résultat dans un système HDFS donné.

Schema et Edit Schema

Un schéma est une description de lignes. Il définit le nombre de champs (colonnes) à traiter et à passer au composant suivant. Lorsque vous créez un Job Spark, évitez le mot réservé line lors du nommage des champs.

Modifiez le schéma en cliquant sur Edit Schema. Si le schéma est en mode Repository, trois options sont disponibles :

  • View schema : sélectionnez cette option afin de voir uniquement le schéma.

  • Change to built-in property : sélectionnez cette option pour passer le schéma en mode Built-In et effectuer des modifications locales.

  • Update repository connection : sélectionnez cette option afin de modifier le schéma stocké dans le référentiel et décider de propager ou non les modifications à tous les Jobs. Si vous souhaitez propager les modifications uniquement au Job courant, cliquez sur No et sélectionnez à nouveau la métadonnée du schéma dans la fenêtre Repository Content.

 

Built-in : le schéma est créé et conservé localement pour ce composant seulement.

 

Repository : le schéma existe déjà et est stocké dans le Repository. Ainsi, il peut être réutilisé dans des Jobs et projets.

Folder

Parcourez votre système ou saisissez le chemin d'accès aux données à utiliser dans le système de fichiers.

Ce chemin d'accès doit pointer vers un dossier plutôt que vers un fichier.

Avertissement : Utilisez un chemin absolu (au lieu d'un chemin relatif) dans ce champ pour éviter des erreurs.

Le bouton pour parcourir votre système ne fonctionne pas en mode Local de Spark. Si vous utilisez le mode Yarn ou Standalone de Spark, assurez-vous d'avoir correctement configuré la connexion dans un composant de configuration au sein du même Job, comme le tHDFSConfiguration.

Output type

Sélectionnez la structure du (des) fichier(s) de sortie JSON.

  • All in one block : les données reçues sont écrites dans un bloc de données.

  • One row per record : les données reçues sont écrites dans des blocs de données séparés, ligne par ligne.

Name of data blocks

Saisissez le nom du bloc de données du (des) fichier(s) de sortie JSON.

Ce champ n'est disponible que si vous sélectionnez l'option All in one block dans la liste Output type.

Action

Sélectionnez l'action que vous souhaitez effectuer sur les données :

  • Overwrite : les données dans HDFS sont écrasées si elles existent déjà.

  • Create : les données sont créées.

Advanced settings

Use local timezone for date Cochez cette case pour utiliser la date locale de la machine sur laquelle votre Job est exécuté. Si vous ne cochez pas cette case, UTC est automatiquement utilisé pour formater les données de type Date.

Utilisation

Règle d'utilisation

Ce composant est utilisé en tant que composant de fin et requiert un lien d'entrée.

Ce composant, ainsi que la Palette Spark Batch à laquelle il appartient, ne s'affiche que lorsque vous créez un Job Spark Batch.

Notez que, dans cette documentation, sauf mention contraire, un scénario présente uniquement des Jobs Standard, c'est-à-dire des Jobs Talend traditionnels d'intégration de données.

Spark Connection

Dans l'onglet Spark Configuration de la vue Run, définissez la connexion à un cluster Spark donné pour le Job complet. De plus, puisque le Job attend ses fichiers Jar dépendants pour l'exécution, vous devez spécifier le répertoire du système de fichiers dans lequel ces fichiers Jar sont transférés afin que Spark puisse accéder à ces fichiers :
  • Yarn mode (Yarn Client ou Yarn Cluster) :
    • Lorsque vous utilisez Google Dataproc, spécifiez un bucket dans le champ Google Storage staging bucket de l'onglet Spark configuration.

    • Lorsque vous utilisez HDInsight, spécifiez le blob à utiliser pour le déploiement du Job, dans la zone Windows Azure Storage configuration de l'onglet Spark configuration.

    • Lorsque vous utilisez Altus, spécifiez le bucket S3 ou le stockage Azure Data Lake Storage (apercu technique) pour le déploiement du Job, dans l'onglet Spark configuration.
    • Lorsque vous utilisez Qubole, ajoutez tS3Configuration à votre Job pour écrire vos données métier dans le système S3 avec Qubole. Sans tS3Configuration, ces données métier sont écrites dans le système Qubole HDFS et détruites une fois que vous arrêtez votre cluster.
    • Lorsque vous utilisez des distributions sur site (on-premises), utilisez le composant de configuration correspondant au système de fichiers utilisé par votre cluster. Généralement, ce système est HDFS et vous devez utiliser tHDFSConfiguration.

  • Standalone mode : vous devez choisir le composant de configuration selon le système de fichiers que vous utilisez, comme tHDFSConfiguration ou tS3Configuration.

    Si vous utilisez Databricks sans composant de configuration dans votre Job, vos données métier sont écrites directement dans DBFS (Databricks Filesystem).

Cette connexion fonctionne uniquement pour le Job dans lequel vous l'avez définie.