Propriétés du tKuduConfiguration pour Apache Spark Batch - 7.1

Kudu

Version
7.1
Language
Français (France)
Product
Talend Big Data
Talend Big Data Platform
Talend Data Fabric
Talend Real-Time Big Data Platform
Module
Studio Talend
Content
Création et développement > Systèmes tiers > Composants Database > Composants Kudu
Gouvernance de données > Systèmes tiers > Composants Database > Composants Kudu
Qualité et préparation de données > Systèmes tiers > Composants Database > Composants Kudu

Ces propriétés sont utilisées pour configurer le tKuduConfiguration s'exécutant dans le framework de Jobs Spark Batch.

Le composant tKuduConfiguration Spark Batch appartient aux familles Storage et Databases.

Le composant de ce framework est disponible dans tous les produits Talend avec Big Data nécessitant une souscription et dans Talend Data Fabric.

Basic settings

Server connection

Cliquez sur le bouton [+] pour ajouter autant de lignes que de nœuds maître Kudu à utiliser, une ligne par master.

Saisissez les emplacements et les ports d'écoute des nœuds maître du service Kudu à utiliser.

Ce composant supporte uniquement le service Apache Kudu installé sur Cloudera.

Pour des informations relatives à la compatibilité entre Apache Kudu et Cloudera, consultez la documentation Cloudera relative à ce sujet : Compatibility Matrix for Apache Kudu (en anglais).

Utilisation

Règle d'utilisation

Ce composant est utilisé sans avoir besoin d'être connecté à d'autres composants.

Utilisez ce composant uniquement si vous devez vous connecter à un cluster Cloudera Kudu.

Spark Connection

Dans l'onglet Spark Configuration de la vue Run, définissez la connexion à un cluster Spark donné pour le Job complet. De plus, puisque le Job attend ses fichiers Jar dépendants pour l'exécution, vous devez spécifier le répertoire du système de fichiers dans lequel ces fichiers Jar sont transférés afin que Spark puisse accéder à ces fichiers :
  • Yarn mode (Yarn Client ou Yarn Cluster) :
    • Lorsque vous utilisez Google Dataproc, spécifiez un bucket dans le champ Google Storage staging bucket de l'onglet Spark configuration.

    • Lorsque vous utilisez HDInsight, spécifiez le blob à utiliser pour le déploiement du Job, dans la zone Windows Azure Storage configuration de l'onglet Spark configuration.

    • Lorsque vous utilisez Altus, spécifiez le bucket S3 ou le stockage Azure Data Lake Storage (apercu technique) pour le déploiement du Job, dans l'onglet Spark configuration.
    • Lorsque vous utilisez Qubole, ajoutez tS3Configuration à votre Job pour écrire vos données métier dans le système S3 avec Qubole. Sans tS3Configuration, ces données métier sont écrites dans le système Qubole HDFS et détruites une fois que vous arrêtez votre cluster.
    • Lorsque vous utilisez des distributions sur site (on-premises), utilisez le composant de configuration correspondant au système de fichiers utilisé par votre cluster. Généralement, ce système est HDFS et vous devez utiliser tHDFSConfiguration.

  • Standalone mode : vous devez choisir le composant de configuration selon le système de fichiers que vous utilisez, comme tHDFSConfiguration ou tS3Configuration.

    Si vous utilisez Databricks sans composant de configuration dans votre Job, vos données métier sont écrites directement dans DBFS (Databricks Filesystem).

Cette connexion fonctionne uniquement pour le Job dans lequel vous l'avez définie.