Apache Spark BatchのtAvroOutputプロパティ - Cloud - 8.0

Avro

Version
Cloud
8.0
Language
日本語
Product
Talend Big Data
Talend Big Data Platform
Talend Data Fabric
Talend Real-Time Big Data Platform
Module
Talend Studio
Content
ジョブデザインと開発 > サードパーティーシステム > ファイルコンポーネント > Avro
データガバナンス > サードパーティーシステム > ファイルコンポーネント > Avro
データクオリティとプレパレーション > サードパーティーシステム > ファイルコンポーネント > Avro
Last publication date
2024-02-28

これらのプロパティは、Spark Batchジョブのフレームワークで実行されているtAvroOutputを設定するために使われます。

Spark BatchtAvroOutputコンポーネントは、ファイルファミリーに属しています。

このフレームワークのコンポーネントは、すべてのサブスクリプションベースのビッグデータ対応のTalend製品およびTalend Data Fabricで使用できます。

基本設定

[Define a storage configuration component] (ストレージ設定コンポーネントを定義)

HDFSなどのターゲットファイルシステムへの接続の設定情報を提供するために使用する設定コンポーネントを選択します。

このチェックボックスをオフにすると、ターゲットファイルシステムはローカルシステムになります。

使用する接続設定は同じジョブ内にあることが必要です。たとえば、tHDFSConfigurationコンポーネントをジョブにドロップした場合は、このコンポーネントを選択して、所定のHDFSシステム内で結果を書き込むことができます。

[Property type] (プロパティタイプ)

[Built-in] (組み込み)[Repository] (リポジトリー)のいずれかです。

 

[Built-In] (組み込み): 一元的に保存されるプロパティデータはありません。

 

[Repository] (リポジトリー): プロパティが保存されているリポジトリーファイルを選択します。

プロパティは、リポジトリーツリーのHadoopクラスターノードに一元的に保存されます。

後続するフィールドは、取得されたデータを使用して事前に入力されます。

Hadoopクラスターノードの詳細は、Hadoop接続メタデータを管理をご覧ください。

[Schema] (スキーマ)[Edit schema] (スキーマを編集)

スキーマとは行の説明のことです。処理して次のコンポーネントに渡すフィールド(カラム)数を定義します。Sparkジョブを作成する場合、フィールドの命名時は予約語のlineを避けます。

スキーマを変更するには[Edit schema] (スキーマを編集)をクリックします。現在のスキーマがリポジトリータイプの場合は、3つのオプションを利用できます。

  • [View schema] (スキーマを表示): スキーマのみを表示する場合は、このオプションを選択します。

  • [Change to built-in property] (組み込みのプロパティに変更): ローカルで変更を行うためにスキーマを組み込みに変更する場合は、このオプションを選択します。

  • [Update repository connection] (リポジトリー接続をアップデート): リポジトリーに保存されているスキーマに変更を加え、変更後にそのコンテンツをすべてのジョブにプロパゲートするかどうかを決める場合は、このオプションを選択します。

    変更を現在のジョブにのみ反映する場合は、変更後、[No] (いいえ)を選択し、[Repository Content] (リポジトリーコンテンツ)ウィンドウで再びこのスキーマのメタデータを選択します。

 

[Built-in] (組み込み): そのコンポーネントに対してのみスキーマを作成し、ローカルに保管します。

 

[Repository] (リポジトリー): スキーマは作成済みで、リポジトリーに保管されています。さまざまなプロジェクトやジョブデザインで再利用できます。

フォルダー

ファイルシステムで使用するデータを参照するか、パスを入力します。

このパスは、ファイルではなくフォルダーを指している必要があります。

参照用のボタンはSpark Localモードでは機能しません。お使いのディストリビューションで、Talend Studioがサポートしているその他のSpark Yarnモードを使用している場合は、同じジョブ内の設定コンポーネントで接続を適切に設定したことを確認する必要があります。使用されるファイルシステムに応じて設定コンポーネントを使用します。

[Action] (アクション)

データを書き込む操作を選択します。

[Create] (作成): ファイルを作成してデータを書き込みます。

[Overwrite] (上書き): [Folder] (フォルダー)フィールドで指定されたディレクトリーに存在するファイルを上書きします。

[Compression] (圧縮)

[Compress data blocks] (データブロックの圧縮)チェックボックスをオンにすると、出力データが圧縮されます。

Hadoopではファイルの保存に必要な領域を削減し、データ転送を高速化するための圧縮形式が異なります。圧縮ファイルを読み取る場合、Talend Studioでは入力フローにフィードする前に展開する必要があります。

詳細設定

[Use output schema compatible with AvroKeyValueOutputFormat] (AvroKeyValueOutputFormatと互換する出力スキーマを使用)

書き込むAvroファイルの階層キー/値スキーマを定義する場合は、このチェックボックスをオンにします。このスキーマに従い、現在のコンポーネントは、入力行のカラムをフィールドが2つ(key およびvalue)ある出力レコードに組み込みます。

この目的で、表示されるテーブル内でキーフィールドとして使用する出力データのカラムを指定する必要があります。

たとえば以下のデータは、このキー/値のストラクチャーで書かれたAvroレコードです。
{ 
  "key" : { "key1" : 1,  "key2" :  "Canada"},
   "value" : { "value1" :  "maple syrup",  "value2" : 2015}
}

使用方法

使用ルール

このコンポーネントは、終了コンポーネントとして使用され、入力リンクを必要とします。

このコンポーネントは、所属するSpark Batchのコンポーネントのパレットと共に、Spark Batchジョブを作成している場合にだけ表示されます。

特に明記していない限り、このドキュメンテーションのシナリオでは、標準ジョブ、つまり従来の Talend Data Integrationジョブだけを扱います。

[Spark Connection] (Spark接続)

[Run] (実行)ビューの[Spark configuration] (Spark設定)タブで、ジョブ全体でのSparkクラスターへの接続を定義します。また、ジョブでは、依存jarファイルを実行することを想定しているため、Sparkがこれらのjarファイルにアクセスできるように、これらのファイルの転送先にするファイルシステム内のディレクトリーを指定する必要があります。
  • Yarnモード(YarnクライアントまたはYarnクラスター):
    • Google Dataprocを使用している場合、[Spark configuration] (Spark設定)タブの[Google Storage staging bucket] (Google Storageステージングバケット)フィールドにバケットを指定します。

    • HDInsightを使用している場合、[Spark configuration] (Spark設定)タブの[Windows Azure Storage configuration] (Windows Azure Storage設定)エリアでジョブのデプロイメントに使用するブロブを指定します。

    • Altusを使用する場合は、[Spark configuration] (Spark設定)タブでジョブのデプロイにS3バケットまたはAzure Data Lake Storageを指定します。
    • オンプレミスのディストリビューションを使用する場合は、クラスターで使われているファイルシステムに対応する設定コンポーネントを使用します。一般的に、このシステムはHDFSになるため、tHDFSConfigurationを使用します。

  • [Standalone mode] (スタンドアロンモード): クラスターで使われているファイルシステム(tHDFSConfiguration Apache Spark BatchtS3Configuration Apache Spark Batchなど)に対応する設定コンポーネントを使用します。

    ジョブ内に設定コンポーネントがない状態でDatabricksを使用している場合、ビジネスデータはDBFS (Databricks Filesystem)に直接書き込まれます。

この接続は、ジョブごとに有効になります。