Transfert de données de HDFS vers le framework Spark de Amazon S3 - 7.0

Amazon S3

author
Talend Documentation Team
EnrichVersion
7.0
EnrichProdName
Talend Big Data
Talend Big Data Platform
Talend Data Fabric
Talend Data Integration
Talend Data Management Platform
Talend Data Services Platform
Talend ESB
Talend MDM Platform
Talend Open Studio for Big Data
Talend Open Studio for Data Integration
Talend Open Studio for ESB
Talend Open Studio for MDM
Talend Real-Time Big Data Platform
task
Création et développement > Systèmes tiers > Services Amazon (Intégration) > Composants Amazon S3
Gouvernance de données > Systèmes tiers > Services Amazon (Intégration) > Composants Amazon S3
Qualité et préparation de données > Systèmes tiers > Services Amazon (Intégration) > Composants Amazon S3
EnrichPlatform
Studio Talend

Les instructions suivantes expliquent comment lire et traiter un fichier dans HDFS et sauvegarder les résultats dans Amazon S3 via un Job Spark - Big Data Batch.

Pour plus d'informations concernant les technologies supportées par Talend, consultez Composants Talend.

Étant donné que Spark n'est pas dépendant d'un système de fichiers en particulier, vous devrez spécifier quel système de fichiers vous utilisez pour votre Job Spark.

Le tHDFSConfiguration est utilisé dans ce scénario par Spark afin de se connecter au système HDFS où sont transférés les fichiers Jar dépendant du Job.

Dans l'onglet Spark Configuration de la vue Run, définissez la connexion à un cluster Spark donné pour le Job complet. De plus, puisque le Job attend ses fichiers .jar dépendants pour l'exécution, vous devez spécifier le répertoire du système de fichiers dans lequel ces fichiers .jar sont transférés afin que Spark puisse accéder à ces fichiers :
  • Yarn mode (Yarn Client ou Yarn Cluster) :
    • Lorsque vous utilisez Google Dataproc, spécifiez un bucket dans le champ Google Storage staging bucket de l'onglet Spark configuration.

    • Lorsque vous utilisez HDInsight, spécifiez le blob à utiliser pour le déploiement du Job, dans la zone Windows Azure Storage configuration de l'onglet Spark configuration.

    • Lorsque vous utilisez Altus, spécifiez le bucket S3 ou le stockage Azure Data Lake (apercu technique) pour le déploiement du Job, dans l'onglet Spark configuration.
    • Lorsque vous utilisez d'autres distributions, utilisez le composant de configuration correspondant au système de fichiers utilisé par votre cluster. Généralement, ce système est HDFS et vous devez utiliser le tHDFSConfiguration.

  • Standalone mode : vous devez choisir le composant de configuration selon le système de fichiers que vous utilisez, comme tHDFSConfiguration ou tS3Configuration.