Écrire/lire des données de/dans MongoDB à l'aide d'un Job Spark Batch - 7.0

MongoDB

author
Talend Documentation Team
EnrichVersion
7.0
EnrichProdName
Talend Big Data
Talend Big Data Platform
Talend Data Fabric
Talend Open Studio for Big Data
Talend Real-Time Big Data Platform
task
Création et développement > Systèmes tiers > Composants Database > Composants MongoDB
Gouvernance de données > Systèmes tiers > Composants Database > Composants MongoDB
Qualité et préparation de données > Systèmes tiers > Composants Database > Composants MongoDB
EnrichPlatform
Studio Talend

Ce scénario s'applique uniquement aux solutions Talend avec Big Data nécessitant une souscription.

Pour plus d'informations concernant les technologies supportées par Talend, consultez Composants Talend.

Dans ce scénario, vous allez créer un Job Spark Batch écrivant des données relatives à des réalisateurs de films dans la base de données MongoDB default puis lisant les données de cette base de données.

L'échantillon de données relatives aux réalisateurs se présente comme suit :
1;Gregg Araki	
2;P.J. Hogan 
3;Alan Rudolph 
4;Alex Proyas
5;Alex Sichel

Ces données contiennent les noms de ces réalisateurs et les ID qui leur ont été attribués.

Notez que cet échantillon de données est créé uniquement à des fins de test.

Le tHDFSConfiguration est utilisé dans ce scénario par Spark afin de se connecter au système HDFS où sont transférés les fichiers Jar dépendant du Job.

Dans l'onglet Spark Configuration de la vue Run, définissez la connexion à un cluster Spark donné pour le Job complet. De plus, puisque le Job attend ses fichiers .jar dépendants pour l'exécution, vous devez spécifier le répertoire du système de fichiers dans lequel ces fichiers .jar sont transférés afin que Spark puisse accéder à ces fichiers :
  • Yarn mode (Yarn Client ou Yarn Cluster) :
    • Lorsque vous utilisez Google Dataproc, spécifiez un bucket dans le champ Google Storage staging bucket de l'onglet Spark configuration.

    • Lorsque vous utilisez HDInsight, spécifiez le blob à utiliser pour le déploiement du Job, dans la zone Windows Azure Storage configuration de l'onglet Spark configuration.

    • Lorsque vous utilisez Altus, spécifiez le bucket S3 ou le stockage Azure Data Lake (apercu technique) pour le déploiement du Job, dans l'onglet Spark configuration.
    • Lorsque vous utilisez d'autres distributions, utilisez le composant de configuration correspondant au système de fichiers utilisé par votre cluster. Généralement, ce système est HDFS et vous devez utiliser le tHDFSConfiguration.

  • Standalone mode : vous devez choisir le composant de configuration selon le système de fichiers que vous utilisez, comme tHDFSConfiguration ou tS3Configuration.

Prérequis : assurez-vous de la bonne installation et du bon fonctionnement du cluster Spark et de la base de données MongoDB à utiliser.

Pour reproduire ce scénario, procédez comme suit :