Propriétés du tReservoirSampling pour Apache Spark Batch - 7.1

Sampling

author
Talend Documentation Team
EnrichVersion
7.1
EnrichProdName
Talend Big Data Platform
Talend Data Fabric
Talend Data Management Platform
Talend Data Services Platform
Talend MDM Platform
Talend Real-Time Big Data Platform
task
Création et développement > Systèmes tiers > Composants Data Quality > Composants d'échantillonnage
Gouvernance de données > Systèmes tiers > Composants Data Quality > Composants d'échantillonnage
Qualité et préparation de données > Systèmes tiers > Composants Data Quality > Composants d'échantillonnage
EnrichPlatform
Studio Talend

Ces propriétés sont utilisées pour configurer le tReservoirSampling s'exécutant dans le framework de Jobs Spark Batch.

Le composant tReservoirSampling Spark Batch appartient à la famille Data Quality.

Le composant de ce framework est disponible dans tous les produits Talend Platform avec Big Data et dans Talend Data Fabric.

Basic settings

Schema et Edit schema

Un schéma est une description de lignes. Il définit le nombre de champs (colonnes) à traiter et à passer au composant suivant. Lorsque vous créez un Job Spark, évitez le mot réservé line lors du nommage des champs.

Cliquez sur Sync columns pour récupérer le schéma du composant précédent.

 

Built-in : le schéma est créé et conservé localement pour ce composant seulement. scénario associé : consultez le Guide utilisateur du Studio Talend .

 

Repository : le schéma existe déjà et est stocké dans le Repository. Ainsi, il peut être réutilisé dans divers projets et Jobs. Scénario associé : consultez le Guide utilisateur du Studio Talend .

Sample Size

Définissez le nombre de lignes à prélever du flux d'entrée et à utiliser comme échantillon.

Advanced settings

Seed for random generator

Saisissez un nombre aléatoire si vous souhaitez extraire les mêmes échantillons pour différentes exécutions du Job.

Répéter l'exécution avec une valeur différente pour la graine permet de générer différents doublons.

Laissez ce champ vide si vous souhaitez générer des doublons différents à chaque fois que vous exécutez le Job.

Utilisation

Règle d'utilisation

Ce composant est utilisé comme étape intermédiaire.

Ce composant, ainsi que la Palette Spark Batch à laquelle il appartient, ne s'affiche que lorsque vous créez un Job Spark Batch.

Notez que, dans cette documentation, sauf mention contraire, un scénario présente uniquement des Jobs Standard, c'est-à-dire des Jobs Talend traditionnels d'intégration de données.

Spark Connection

Dans l'onglet Spark Configuration de la vue Run, définissez la connexion à un cluster Spark donné pour le Job complet. De plus, puisque le Job attend ses fichiers .jar dépendants pour l'exécution, vous devez spécifier le répertoire du système de fichiers dans lequel ces fichiers .jar sont transférés afin que Spark puisse accéder à ces fichiers :
  • Yarn mode (Yarn Client ou Yarn Cluster) :
    • Lorsque vous utilisez Google Dataproc, spécifiez un bucket dans le champ Google Storage staging bucket de l'onglet Spark configuration.

    • Lorsque vous utilisez HDInsight, spécifiez le blob à utiliser pour le déploiement du Job, dans la zone Windows Azure Storage configuration de l'onglet Spark configuration.

    • Lorsque vous utilisez Altus, spécifiez le bucket S3 ou le stockage Azure Data Lake Storage (apercu technique) pour le déploiement du Job, dans l'onglet Spark configuration.
    • Lorsque vous utilisez Qubole, ajoutez tS3Configuration à votre Job pour écrire vos données métier dans le système S3 avec Qubole. Sans tS3Configuration, ces données métier sont écrites dans le système Qubole HDFS et détruites une fois que vous arrêtez votre cluster.
    • Lorsque vous utilisez des distributions sur site (on-premises), utilisez le composant de configuration correspondant au système de fichiers utilisé par votre cluster. Généralement, ce système est HDFS et vous devez utiliser tHDFSConfiguration.

  • Standalone mode : vous devez choisir le composant de configuration selon le système de fichiers que vous utilisez, comme tHDFSConfiguration ou tS3Configuration.

    Si vous utilisez Databricks sans composant de configuration dans votre Job, vos données métier sont écrites directement dans DBFS (Databricks Filesystem).

Cette connexion fonctionne uniquement pour le Job dans lequel vous l'avez définie.