tMysqlInput properties in Spark Batch Jobs - 6.3

Talend Components Reference Guide

EnrichVersion
6.3
EnrichProdName
Talend Big Data
Talend Big Data Platform
Talend Data Fabric
Talend Data Integration
Talend Data Management Platform
Talend Data Services Platform
Talend ESB
Talend MDM Platform
Talend Open Studio for Big Data
Talend Open Studio for Data Integration
Talend Open Studio for Data Quality
Talend Open Studio for ESB
Talend Open Studio for MDM
Talend Real-Time Big Data Platform
task
Data Governance
Data Quality and Preparation
Design and Development
EnrichPlatform
Talend Studio

Component family

Databases/MySQL

 

Basic settings

Property type

Either Built-In or Repository.

Built-In: No property data stored centrally.

Repository: Select the repository file where the properties are stored.

 

Click this icon to open a database connection wizard and store the database connection parameters you set in the component Basic settings view.

For more information about setting up and storing database connection parameters, see Talend Studio User Guide.

 

Use an existing connection

Select this check box and in the Component List click the relevant connection component to reuse the connection details you already defined.

 

DB version

Select the version of the database to be used.

When the database to be used is RDS Aurora, you need to select Mysql 5.

 

Host

Database server IP address.

 

Port

Listening port number of DB server.

 

Database

Name of the database.

 

Username and Password

DB user authentication data.

To enter the password, click the [...] button next to the password field, and then in the pop-up dialog box enter the password between double quotes and click OK to save the settings.

 

Schema and Edit Schema

A schema is a row description. It defines the number of fields (columns) to be processed and passed on to the next component. The schema is either Built-In or stored remotely in the Repository.

 

 

Built-In: You create and store the schema locally for this component only. Related topic: see Talend Studio User Guide.

 

 

Repository: You have already created the schema and stored it in the Repository. You can reuse it in various projects and Job designs. Related topic: see Talend Studio User Guide.

  

Click Edit schema to make changes to the schema. If the current schema is of the Repository type, three options are available:

  • View schema: choose this option to view the schema only.

  • Change to built-in property: choose this option to change the schema to Built-in for local changes.

  • Update repository connection: choose this option to change the schema stored in the repository and decide whether to propagate the changes to all the Jobs upon completion. If you just want to propagate the changes to the current Job, you can select No upon completion and choose this schema metadata again in the [Repository Content] window.

 

Table Name

Type in the name of the table from which you need to read data.

 

Query type and Query

Enter your database query paying particularly attention to properly sequence the fields in order to match the schema definition.

If you are using Spark V2.0 onwards, the Spark SQL does not recognize the prefix of a database table anymore. This means that you must enter only the table name without adding any prefix that indicates for example the schema this table belongs to.

For example, if you need to perform a query in a table system.mytable, in which the system prefix indicates the schema that the mytable table belongs to, in the query, you must enter mytable only.

Advanced settings

Additional JDBC parameters

Specify additional connection properties for the database connection you are creating. The properties are separated by semicolon and each property is a key-value pair, for example, encryption=1;clientname=Talend.

This field is not available if the Use an existing connection check box is selected.

 

Spark SQL JDBC parameters

Add the JDBC properties supported by Spark SQL to this table. For a list of the user configurable properties, see JDBC to other database.

This component automatically set the url, dbtable and driver properties by using the configuration from the Basic settings tab.

 

Trim all the String/Char columns

Select this check box to remove leading and trailing whitespace from all the String/Char columns.

 

Trim column

Remove leading and trailing whitespace from defined columns.

Note

Clear Trim all the String/Char columns to enable Trim columns in this field.

 

Enable partitioning

Select this check box to read data in partitions.

Define, within double quotation marks, the following parameters to configure the partitioning:

  • Partition column: the numeric column used as partition key.

  • Lower bound of the partition stride and Upper bound of the partition stride: enter the upper bounds and the lower bound to determine the partition stride. These bounds do not filter the table rows. All rows in the table are partitioned and returned.

  • Number of partitions: the number of partitions into which the table rows are split. Each Spark worker handles only one of the partitions at a time.

The average size of the partitions is the result of the difference between the upper bound and the lower bound divided by the number of partitions, that is to say, (upperBound - lowerBound)/partitionNumber, while the first and the last partitions also include all the other rows that are not contained in the other partitions.

For example, to partition 1000 rows into 4 partitions, if you enter 0 for the lower bound and 1000 for the upper bound, each partition will contain 250 rows and so the partitioning is even. If you enter 250 for the lower bound and 750 for the upper bound, the second and the third partition will each contain 125 rows and the first and the last partitions each 375 rows. With this configuration, the partitioning is skewed.

Usage in Spark Batch Jobs

This component is used as a start component and requires an output link..

This component should use a tMysqlConfiguration component present in the same Job to connect to MySQL. You need to select the Use an existing connection check box and then select the tMysqlConfiguration component to be used.

This component, along with the Spark Batch component Palette it belongs to, appears only when you are creating a Spark Batch Job.

Note that in this documentation, unless otherwise explicitly stated, a scenario presents only Standard Jobs, that is to say traditional Talend data integration Jobs.

Log4j

If you are using a subscription-based version of the Studio, the activity of this component can be logged using the log4j feature. For more information on this feature, see Talend Studio User Guide.

For more information on the log4j logging levels, see the Apache documentation at http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/Level.html.

Spark Connection

You need to use the Spark Configuration tab in the Run view to define the connection to a given Spark cluster for the whole Job. In addition, since the Job expects its dependent jar files for execution, one and only one file system related component from the Storage family is required in the same Job so that Spark can use this component to connect to the file system to which the jar files dependent on the Job are transferred:

This connection is effective on a per-Job basis.