tMapRStreamsOutput - 6.3

Talend Components Reference Guide

EnrichVersion
6.3
EnrichProdName
Talend Big Data
Talend Big Data Platform
Talend Data Fabric
Talend Data Integration
Talend Data Management Platform
Talend Data Services Platform
Talend ESB
Talend MDM Platform
Talend Open Studio for Big Data
Talend Open Studio for Data Integration
Talend Open Studio for Data Quality
Talend Open Studio for ESB
Talend Open Studio for MDM
Talend Real-Time Big Data Platform
task
Data Governance
Data Quality and Preparation
Design and Development
EnrichPlatform
Talend Studio

Function

This component receives messages serialized into byte arrays by its preceding component and issues these messages into a given MapR Streams system.

Purpose

The tMapRStreamsOutput component publishes messages into a MapR Streams system. Only MapR V5.2 onwards is supported by this component.

Depending on the Talend solution you are using, this component can be used in one, some or all of the following Job frameworks:

tMapRStreamsOutput properties

Component family

Internet/MapR Streams

 

Basic settings

Schema and Edit schema

A schema is a row description. It defines the number of fields (columns) to be processed and passed on to the next component. The schema is either Built-In or stored remotely in the Repository.

Note that the schema of this component is read-only. It stores the messages to be published.

 

Use an existing connection

Select this check box and from the list displayed select the relevant connection component to reuse the connection details you have already defined.

 

Distribution and Version

Select the MapR distribution to be used. Only MapR V5.2 onwards is supported by the MapRDB components.

If the distribution you need to use with your MapRDB database is not officially supported by this MapRBD component, that is to say, this distribution is MapR but is not listed in the Version drop-down list of this components or this distribution is not MapR at all, select Custom.

In order to connect to a custom distribution, once selecting Custom, click the button to display the dialog box in which you can alternatively:

  1. Select Import from existing version to import an officially supported distribution as base and then add other required jar files which the base distribution does not provide.

  2. Select Import from zip to import the configuration zip for the custom distribution to be used. This zip file should contain the libraries of the different Hadoop elements and the index file of these libraries.

    In Talend Exchange, members of Talend community have shared some ready-for-use configuration zip files which you can download from this Hadoop configuration list and directly use them in your connection accordingly. However, because of the ongoing evolution of the different Hadoop-related projects, you might not be able to find the configuration zip corresponding to your distribution from this list; then it is recommended to use the Import from existing version option to take an existing distribution as base to add the jars required by your distribution.

    Note that custom versions are not officially supported by Talend. Talend and its community provide you with the opportunity to connect to custom versions from the Studio but cannot guarantee that the configuration of whichever version you choose will be easy, due to the wide range of different Hadoop distributions and versions that are available. As such, you should only attempt to set up such a connection if you have sufficient Hadoop experience to handle any issues on your own.

    Note

    In this dialog box, the active check box must be kept selected so as to import the jar files pertinent to the connection to be created between the custom distribution and this component.

    For a step-by-step example about how to connect to a custom distribution and share this connection, see Connecting to a custom Hadoop distribution.

 Topic name

Enter the name of the topic you want to publish messages to. This topic must already exist. You must enter the name of the stream to which this topic belongs. The syntax is path_to_the_stream:topic_name.

 

Compress the data

Select the Compress the data check box to compress the output data.

Advanced settings

Producer properties

Add the MapR Streams producer properties you need to customize to this table.

For further information about the producer configuration you can define in this table, see the section describing the important producer configuration properties for MapR Streams in MapR documentation at MapR Streams Overview.

 

tStatCatcher Statistics

Select this check box to gather the processing metadata at the Job level as well as at each component level.

Global Variables

ERROR_MESSAGE: the error message generated by the component when an error occurs. This is an After variable and it returns a string. This variable functions only if the Die on error check box is cleared, if the component has this check box.

A Flow variable functions during the execution of a component while an After variable functions after the execution of the component.

To fill up a field or expression with a variable, press Ctrl + Space to access the variable list and choose the variable to use from it.

For further information about variables, see Talend Studio User Guide.

Usage

This component is an end component. It requires a tJavaRow or tJava component to transform the incoming data into serialized byte arrays.

The following sample shows how to construct a statement to perform this transformation:

output_row.serializedValue = input_row.users.getBytes();

In this code, the output_row variable represents the schema of the data to be output to tMapRStreamsOutput and output_row.serializedValue the single read-only column of that schema; the input_row variable represents the schema of the incoming data and input_row.users the input column called users to be transformed to byte arrays by the getBytes() method.

Prerequisites

The Hadoop distribution must be properly installed, so as to guarantee the interaction with Talend Studio. The following list presents MapR related information for example.

  • Ensure that you have installed the MapR client in the machine where the Studio is, and added the MapR client library to the PATH variable of that machine. According to MapR's documentation, the library or libraries of a MapR client corresponding to each OS version can be found under MAPR_INSTALL\ hadoop\hadoop-VERSION\lib\native. For example, the library for Windows is \lib\native\MapRClient.dll in the MapR client jar file. For further information, see the following link from MapR: http://www.mapr.com/blog/basic-notes-on-configuring-eclipse-as-a-hadoop-development-environment-for-mapr.

    Without adding the specified library or libraries, you may encounter the following error: no MapRClient in java.library.path.

  • Set the -Djava.library.path argument, for example, in the Job Run VM arguments area of the Run/Debug view in the [Preferences] dialog box in the Window menu. This argument provides to the Studio the path to the native library of that MapR client. This allows the subscription-based users to make full use of the Data viewer to view locally in the Studio the data stored in MapR.

For further information about how to install a Hadoop distribution, see the manuals corresponding to the Hadoop distribution you are using.

Related scenarios

No scenario is available for the Standard version of this component yet.

tMapRStreamsOutput properties in Spark Streaming Jobs

Component family

Messaging/MapR Streams

 

Basic settings

Schema and Edit schema

A schema is a row description. It defines the number of fields (columns) to be processed and passed on to the next component. The schema is either Built-In or stored remotely in the Repository.

Note that the schema of this component is read-only. It stores the messages to be published.

 Topic name

Enter the name of the topic you want to publish messages to. This topic must already exist. You must enter the name of the stream to which this topic belongs. The syntax is path_to_the_stream:topic_name.

 

Compress the data

Select the Compress the data check box to compress the output data.

Advanced settings

Producer properties

Add the MapR Streams producer properties you need to customize to this table.

For further information about the producer configuration you can define in this table, see the section describing the important producer configuration properties for MapR Streams in MapR documentation at MapR Streams Overview.

 

Connection pool

In this area, you configure, for each Spark executor, the connection pool used to control the number of connections that stay open simultaneously. The default values given to the following connection pool parameters are good enough for most use cases.

  • Max total number of connections: enter the maximum number of connections (idle or active) that are allowed to stay open simultaneously.

    The default number is 8. If you enter -1, you allow unlimited number of open connections at the same time.

  • Max waiting time (ms): enter the maximum amount of time at the end of which the response to a demand for using a connection should be returned by the connection pool. By default, it is -1, that is to say, infinite.

  • Min number of idle connections: enter the minimum number of idle connections (connections not used) maintained in the connection pool.

  • Max number of idle connections: enter the maximum number of idle connections (connections not used) maintained in the connection pool.

 

Evict connections

Select this check box to define criteria to destroy connections in the connection pool. The following fields are displayed once you have selected it.

  • Time between two eviction runs: enter the time interval (in milliseconds) at the end of which the component checks the status of the connections and destroys the idle ones.

  • Min idle time for a connection to be eligible to eviction: enter the time interval (in milliseconds) at the end of which the idle connections are destroyed.

  • Soft min idle time for a connection to be eligible to eviction: this parameter works the same way as Min idle time for a connection to be eligible to eviction but it keeps the minimum number of idle connections, the number you define in the Min number of idle connections field.

Usage in Spark Streaming Jobs

This component is used as an end component and requires an input link.

This component needs a Write component such as tWriteJSONField to define a serializedValue column in the input schema to send serialized data.

Spark Connection

You need to use the Spark Configuration tab in the Run view to define the connection to a given Spark cluster for the whole Job. In addition, since the Job expects its dependent jar files for execution, one and only one file system related component from the Storage family is required in the same Job so that Spark can use this component to connect to the file system to which the jar files dependent on the Job are transferred:

This connection is effective on a per-Job basis.

Prerequisites

The Hadoop distribution must be properly installed, so as to guarantee the interaction with Talend Studio. The following list presents MapR related information for example.

  • Ensure that you have installed the MapR client in the machine where the Studio is, and added the MapR client library to the PATH variable of that machine. According to MapR's documentation, the library or libraries of a MapR client corresponding to each OS version can be found under MAPR_INSTALL\ hadoop\hadoop-VERSION\lib\native. For example, the library for Windows is \lib\native\MapRClient.dll in the MapR client jar file. For further information, see the following link from MapR: http://www.mapr.com/blog/basic-notes-on-configuring-eclipse-as-a-hadoop-development-environment-for-mapr.

    Without adding the specified library or libraries, you may encounter the following error: no MapRClient in java.library.path.

  • Set the -Djava.library.path argument, for example, in the Job Run VM arguments area of the Run/Debug view in the [Preferences] dialog box in the Window menu. This argument provides to the Studio the path to the native library of that MapR client. This allows the subscription-based users to make full use of the Data viewer to view locally in the Studio the data stored in MapR.

For further information about how to install a Hadoop distribution, see the manuals corresponding to the Hadoop distribution you are using.

Related scenarios

No scenario is available for the Spark Streaming version of this component yet.