Propriétés du tRecommend pour Apache Spark Streaming - 6.5

Machine Learning

author
Talend Documentation Team
EnrichVersion
6.5
EnrichProdName
Talend Big Data
Talend Big Data Platform
Talend Data Fabric
Talend Real-Time Big Data Platform
task
Création et développement > Systèmes tiers > Composants Machine Learning
Gouvernance de données > Systèmes tiers > Composants Machine Learning
Qualité et préparation de données > Systèmes tiers > Composants Machine Learning
EnrichPlatform
Studio Talend

Ces propriétés sont utilisées pour configurer le tRecommend s'exécutant dans le framework de Jobs Spark Streaming.

Le composant tRecommend Spark Streaming appartient à la famille Machine Learning.

Le composant de ce framework est disponible dans Talend Real Time Big Data Platform et dans Talend Data Fabric.

Basic settings

Schema et Edit Schema

Un schéma est une description de lignes. Il définit le nombre de champs (colonnes) dans le Repository. Lorsque vous créez un Job Spark, évitez le mot réservé line lors du nommage des champs.

Créez le schéma en cliquant sur le bouton Edit Schema. Si le schéma est en mode Repository, trois options sont disponibles :

  • View schema : sélectionnez cette option afin de voir le schéma.

  • Change to built-in property : sélectionnez cette option pour passer le schéma en mode Built-In et effectuer des modifications locales.

  • Update repository connection : sélectionnez cette option afin de modifier le schéma stocké dans le référentiel et décider de propager ou non les modifications à tous les Jobs. Si vous souhaitez propager les modifications uniquement au Job courant, cliquez sur No et sélectionnez à nouveau la métadonnée du schéma dans la fenêtre [Repository Content].

Notez que, en dehors des colonnes que vous pouvez modifier vous-même, les colonnes product_ID et score sont en lecture seule et utilisées pour contenir les données relatives aux préférences des utilisateurs calculées par rapport au modèle de recommandation utilisé. La colonne score indique à quel point un produit est recommandé à un utilisateur.

Define a storage configuration component

Sélectionnez le composant de configuration à utiliser pour fournir les informations de configuration pour la connexion au système de fichiers cible, comme HDFS.

Si vous laissez cette case décochée, le système de fichiers cible est le système local.

Le composant de configuration à utiliser doit se trouver dans le même Job. Par exemple, si vous avez ajouté un composant tHDFSConfiguration dans votre Job, vous pouvez le sélectionner pour écrire le résultat dans un système HDFS donné.

Input parquet model

Saisissez le répertoire dans lequel est stocké le modèle de recommandation à utiliser. Ce répertoire doit se situer sur la machine où le Job est exécuté.

Le bouton pour parcourir votre système ne fonctionne pas en mode Local de Spark. Si vous utilisez le mode Yarn ou Standalone de Spark, assurez-vous d'avoir correctement configuré la connexion dans un composant de configuration au sein du même Job, comme le tHDFSConfiguration.

Ce modèle doit être généré par un composant tALSModel.

Select the User Identity column

Sélectionnez, parmi les colonnes d'entrée, la colonne contenant les données relatives à l'ID de l'utilisateur.

Le composant tRecommend nécessite que les ID des utilisateurs d'entrée correspondent aux utilisateurs connus par le modèle de recommandation à utiliser.

Number of recommendations

Saisissez le nombre de produits les plus recommandés à écrire en sortie.

Notez que cette valeur est une valeur numérique. Vous ne pouvez utiliser les guillemets doubles pour l'entourer.

Utilisation

Règle d'utilisation

Ce composant est utilisé comme étape intermédiaire.

Ce composant, ainsi que les composants Spark Streaming de la Palette à laquelle il appartient, s'affichent uniquement lorsque vous créez un Job Spark Streaming.

Notez que, dans cette documentation, sauf mention contraire, un scénario présente uniquement des Jobs Standard, c'est-à-dire des Jobs Talend traditionnels d'intégration de données.

Les ID des utilisateurs traités par ce composant doivent être connus par le modèle de recommandation à utiliser. Lorsqu'un utilisateur est inconnu pour le modèle de recommandation, les valeurs correspondantes retournées dans les colonnes product_ID et score sont nulles. Cela vous permet de récupérer les enregistrements relatifs aux utilisateurs inconnus, à l'aide d'un composant tFilterRow après le tRecommend au sein du même Job.

Installation de MLlib

La bibliothèque d'apprentissage automatique Spark, MLlib, utilise la bibliothèque gfortran runtime et, pour cette raison, vous devez vous assurer que cette bibliothèque est présente dans chaque nœud du cluster Spark à utiliser.

Pour plus d'informations concernant MLlib et cette bibliothèque, consultez la documentation Spark associée.

Connexion à Spark

Vous devez utiliser l'onglet Spark Configuration dans la vue Run afin de définir la connexion à un cluster Spark donné pour le Job entier. De plus, puisque le Job attend ses fichiers .jar dépendants pour l'exécution, vous devez spécifier le répertoire du système de fichiers dans lequel ces fichiers .jar sont transférés afin que Spark puisse accéder à ces fichiers :
  • Yarn mode : lorsque vous utilisez Google Dataproc, spécifiez un bucket dans le champ Google Storage staging bucket de l'onglet Spark configuration. Lorsque vous utilisez d'autres distributions, utilisez un composant tHDFSConfiguration afin de spécifier le répertoire.

  • Standalone mode : vous devez choisir le composant de configuration selon le système de fichiers que vous utilisez, comme tHDFSConfiguration ou tS3Configuration.

Cette connexion fonctionne uniquement pour le Job dans lequel vous l'avez définie.