Famille du composant |
Storage | |
Basic settings |
Property type |
Peut être Built-in ou Repository. - Built-in : Propriétés utilisées ponctuellement. - Repository : Sélectionnez le fichier dans lequel sont stockées les propriétés du composant. |
Version |
Distribution |
Sélectionnez dans la liste le cluster que vous utilisez. Les options de la liste varient selon le composant que vous utilisez. Les options de la liste dépendent des composants que vous utilisez, Parmi ces options, les suivantes nécessitent une configuration spécifique.
Pour vous connecter à une distribution personnalisée, une fois l'option Custom sélectionnée, cliquez sur le bouton
|
Hadoop version |
Sélectionnez la version de la distribution Hadoop que vous utilisez. Les options disponibles dépendent du composant que vous utilisez. En plus de l'évolution de Hadoop, veuillez noter les changements suivants :
| |
Authentication |
Use kerberos authentication |
Si vous accédez au cluster Hadoop fonctionnant avec la sécurité de Kerberos, cochez cette case, puis saisissez le "principal name" de Kerberos pour le NameNode dans le champ affiché. Cela vous permet d'utiliser votre identifiant pour vous authentifier, en le comparant aux identifiants stockés dans Kerberos. Cette case est disponible ou indisponible selon la distribution d'Hadoop à laquelle vous vous connectez. |
Use a keytab to authenticate |
Cochez la case Use a keytab to authenticate pour vous connecter à un système Hadoop utilisant Kerberos à l'aide d'un fichier keytab. Un fichier keytab contient des paires de principaux Kerberos et de clés cryptées. Vous devez saisir le principal à utiliser dans le champ Principal et le chemin d'accès au fichier keytab dans le champ Keytab. Notez que l'utilisateur qui exécute un Job utilisant un keytab n'est pas forcément celui désigné par le principal mais qu'il doit avoir le droit de lecture pour le fichier keytab utilisé. Par exemple, le nom d'utilisateur que vous utilisez pour exécuter le Job est user1 et le principal à utiliser est guest. Dans cette situation, assurez-vous que user1 a les droits de lecture pour le fichier keytab à utiliser. | |
|
NameNode URI |
Saisissez l'URI du NameNode Hadoop. Le NameNode est le nœud maître d'un système Hadoop. Par exemple, si vous avez sélectionné une machine nommée masternode comme NameNode d'une distribution Apache Hadoop, son emplacement est hdfs://masternode:portnumber. |
|
User name |
Le champ User name est disponible lorsque vous n'utilisez pas Kerberos pour vous authentifier. Dans ce champ, saisissez votre identifiant pour cette distribution. Si vous laissez le champ vide, le nom de la machine hébergeant le Studio sera utilisé. |
Group |
Identifiant de l'utilisateur et nom du groupe sous lesquels les instances HDFS ont été lancées. Ce champ peut être disponible ou indisponible selon la distribution que vous utilisez. | |
Use datanode hostname |
Cochez la case Use datanode hostname pour permettre au Job d'accéder aux nœuds de données via leurs hébergeurs. Cela configure la propriété dfs.client.use.datanode.hostname à true. Lorsque vous vous connectez à un système de fichiers S3N, vous devez cocher cette case. | |
|
Hadoop properties |
Le Studio Talend utilise une configuration par défaut pour son moteur, afin d'effectuer des opérations dans une distribution Hadoop. Si vous devez utiliser une configuration personnalisée dans une situation spécifique, renseignez dans cette table la ou les propriété(s) à personnaliser. Lors de l'exécution, la ou les propriété(s) personnalisée(s) va (vont) écraser celle(s) par défaut.
Pour plus d'informations concernant les propriétés requises par Hadoop et ses systèmes associés, tels que HDFS et Hive, consultez la documentation de la distribution Hadoop utilisée ou consultez la documentation d'Apache Hadoop sur http://hadoop.apache.org/docs en sélectionnant la version de la documentation souhaitée. A titre d'exemple, les liens vers certaines propriétés sont listés ci-après:
|
Utilisation dans des Jobs Spark Batch |
Dans un Job Talend Spark Batch, ce composant est utilisé en standalone. Il génère du code Spark natif qui peut être exécuté directement dans un cluster Spark. Déposez le tHDFSConfiguration avec le sous-job relatif au système de fichiers à exécuter dans le même Job, afin que la configuration soit utilisée par le Job complet lors de l'exécution. Ce composant, ainsi que la Palette Spark Batch à laquelle il appartient, ne s'affiche que lorsque vous créez un Job Spark Batch. Notez que, dans cette documentation, sauf mention contraire, un scénario présente uniquement des Jobs Standard, c'est-à-dire des Jobs Talend traditionnels d'intégration de données. | |
Prérequisites |
La distribution Hadoop doit être correctement installée afin de garantir les interactions avec le Studio Talend. La liste suivante présente des informations d'exemple relatives à MapR.
Pour plus d'informations concernant l'installation d'une distribution Hadoop, consultez le manuel correspondant à la distribution Hadoop que vous utilisez. | |
Log4j |
Si vous utilisez une solution Talend soumise à souscription, l'activité de ce composant peut être journalisée avec la fonctionnalité log4j. Pour plus d'informations sur cette fonctionnalité, consultez le Guide utilisateur du Studio Talend. Pour plus d'informations sur les niveaux de logs du log4j, consultez la documentation d'Apache : http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/Level.html (en anglais). | |
Spark Connection |
Vous devez utiliser l'onglet Spark Configuration de la vue Run afin de définir la connexion à un cluster Spark donné pour le Job complet. De plus, puisque le Job attend ses fichiers .jar dépendants pour l'exécution, un (et un seul) composant relatif à un système de fichiers de la famille Storage est requis au sein du même Job, afin que Spark puisse utiliser ce composant pour se connecter au système de fichiers auquel les fichiers .jar dépendants du Job sont transférés :
Cette connexion fonctionne uniquement pour le Job dans lequel vous l'avez définie. |