tWriteAvroFields - 6.1

Composants Talend Guide de référence

EnrichVersion
6.1
EnrichProdName
Talend Big Data
Talend Big Data Platform
Talend Data Fabric
Talend Data Integration
Talend Data Management Platform
Talend Data Services Platform
Talend ESB
Talend MDM Platform
Talend Open Studio for Big Data
Talend Open Studio for Data Integration
Talend Open Studio for Data Quality
Talend Open Studio for ESB
Talend Open Studio for MDM
Talend Real-Time Big Data Platform
task
Création et développement
Gouvernance de données
Qualité et préparation de données
EnrichPlatform
Studio Talend

Avertissement

La version Streaming de ce composant est disponible dans la Palette du studio si vous avez souscrit à Talend Real-time Big Data Platform ou Talend Data Fabric.

Fonction

Le composant tWriteAvroFields transforme les données entrantes en fichiers Avro.

Objectif

Le tWriteAvroFields génères des binaires Avro à utiliser par les composants nécessitant des données sérialisées en entrée, comme le tKafkaOutput.

Propriétés du tWriteAvroFields dans des Jobs Spark Streaming

Avertissement

La version Streaming de ce composant est disponible dans la Palette du studio si vous avez souscrit à Talend Real-time Big Data Platform ou Talend Data Fabric.

Famille du composant

Processing/Fields

 

Basic settings

Schema et Edit Schema

Un schéma est une description de lignes, il définit le nombre de champs (colonnes) qui sont traités et passés au composant suivant. Le schéma est soit local (Built-In), soit distant dans le Repository.

Le schéma de ce composant est en lecture seule. Vous pouvez cliquer sur Edit schema afin de visualiser le schéma.

Le schéma en lecture seule du tWriteAvroFields reçoit des données en tant qu'objet entier depuis le schéma de son composant d'entrée, sans se soucier du schéma d'entrée et sérialise l'objet entrant en binaires Avro.

Il n'est pas obligatoire que le flux d'entrée ait un schéma identique. Par exemple, un schéma d'entrée composé d'une colonne user et d'une colonne age peut être directement sérialisé. Les types de données supportés par ce composant sont listés dans sa vue Basic settings.

Utilisation dans des Jobs Spark Streaming

Dans un Job Talend Spark Streaming, ce composant est utilisé comme étape intermédiaire. Les composants utilisés avec celui-ci doivent également être des composants Spark Streaming. Ils génèrent nativement du code Spark Streaming pouvant être exécuté directement dans un cluster Spark.

Ce composant, ainsi que les composants Spark Streaming de la Palette à laquelle il appartient, s'affichent uniquement lorsque vous créez un Job Spark Streaming.

Notez que, dans cette documentation, sauf mention contraire , un scénario présente uniquement des Jobs de type Standard, c'est-à-dire des Jobs Talend traditionnels d'intégration de données.

Spark Connection

Vous devez utiliser l'onglet Spark Configuration de la vue Run afin de définir la connexion à un cluster Spark donné pour le Job complet. De plus, puisque le Job attend ses fichiers .jar dépendants pour l'exécution, un (et un seul) composant relatif à un système de fichiers de la famille Storage est requis au sein du même Job, afin que Spark puisse utiliser ce composant pour se connecter au système de fichiers auquel les fichiers .jar dépendants du Job sont transférés :

Cette connexion fonctionne uniquement pour le Job dans lequel vous l'avez définie.

Log4j

Si vous utilisez une solution Talend soumise à souscription, l'activité de ce composant peut être journalisée avec la fonctionnalité log4j. Pour plus d'informations sur cette fonctionnalité, consultez le Guide utilisateur du Studio Talend.

Pour plus d'informations sur les niveaux de logs du log4j, consultez la documentation d'Apache : http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/Level.html (en anglais).

Scénario associé

Aucun scénario n'est disponible pour la version Spark Streaming de ce composant.