Propriétés du tHiveInput pour Apache Spark Streaming - 6.5

Hive

author
Talend Documentation Team
EnrichVersion
6.5
EnrichProdName
Talend Big Data
Talend Big Data Platform
Talend Data Fabric
Talend Data Integration
Talend Data Management Platform
Talend Data Services Platform
Talend ESB
Talend MDM Platform
Talend Open Studio for Big Data
Talend Open Studio for Data Integration
Talend Open Studio for ESB
Talend Open Studio for MDM
Talend Real-Time Big Data Platform
task
Création et développement > Systèmes tiers > Composants Database > Composants Hive
Gouvernance de données > Systèmes tiers > Composants Database > Composants Hive
Qualité et préparation de données > Systèmes tiers > Composants Database > Composants Hive
EnrichPlatform
Studio Talend

Ces propriétés sont utilisées pour configurer le tHiveInput s'exécutant dans le framework de Jobs Spark Streaming.

Le composant tHiveInput Spark Streaming appartient à la famille Databases.

Le composant de ce framework est disponible dans Talend Real Time Big Data Platform et dans Talend Data Fabric.

Basic settings

Hive storage configuration

Sélectionnez le composant tHiveConfiguration duquel vous souhaitez que Spark utilise les détails de configuration pour se connecter à Hive.

HDFS Storage configuration

Sélectionnez le composant tHDFSConfiguration duquel vous souhaitez que Spark utilise les détails de la configuration pour se connecter à un système HDFS donné et transférer les fichiers .jar dépendants à ce système HDFS. Ce champ est utile uniquement lorsque vous utilisez une distribution on-premises.

Schema et Edit Schema

Un schéma est une description de lignes. Il définit le nombre de champs (colonnes) dans le Repository. Lorsque vous créez un Job Spark, évitez le mot réservé line lors du nommage des champs.

Utilisez toujours des minuscules lors du nommage d'un champ, car le traitement en tâche de fond peut forcer les noms de champs à être en minuscules.

Créez le schéma en cliquant sur le bouton Edit Schema. Si le schéma est en mode Repository, trois options sont disponibles :

  • View schema : sélectionnez cette option afin de voir le schéma.

  • Change to built-in property : sélectionnez cette option pour passer le schéma en mode Built-In et effectuer des modifications locales.

  • Update repository connection : sélectionnez cette option afin de modifier le schéma stocké dans le référentiel et décider de propager ou non les modifications à tous les Jobs. Si vous souhaitez propager les modifications uniquement au Job courant, cliquez sur No et sélectionnez à nouveau la métadonnée du schéma dans la fenêtre [Repository Content].

 

Built-In : le schéma est créé et conservé ponctuellement pour ce composant seulement. Consultez également : le Guide utilisateur du Studio Talend .

 

Repository : Le schéma existe déjà et est stocké dans le Repository. Ainsi, il peut être réutilisé dans des Jobs et projets. Consultez également : le Guide utilisateur du Studio Talend .

Input source

Sélectionnez le type des données d'entrée que vous souhaitez que le tHiveInput lise :

  • Hive table : les champs Database et Table name sont affichés. Vous devez saisir les informations relatives concernant la base de données Hive à laquelle se connecter et la table Hive de laquelle lire les données.

  • Hive query : le champ Hive query est affiché. Vous devez saisir l'instruction de requête Hive à utiliser pour sélectionner les données à utiliser.

  • ORC file : le champ Input file name est affiché et la liste de configuration du stockage Hive est désactivée, car le fichier ORC doit être stocké dans votre système HDFS hébergeant Hive. Saisissez le répertoire où est stocké le fichier à utiliser.

Pour plus d'informations concernant le langage de requêtes Hive, consultez https://cwiki.apache.org/confluence/display/Hive/LanguageManual (en anglais).

Remarque : Les données compressées en Gzip ou Bzip2 peuvent être traitées via les instructions de requête. Pour plus d'informations, consultez la page https://cwiki.apache.org/confluence/display/Hive/CompressedStorage (en anglais).

Hadoop fournit différents formats de compression permettant de réduire l'espace nécessaire au stockage des fichiers et d'accélérer le transfert de données. Lorsque vous lisez un fichier compressé, le Studio Talend doit le décompresser avant de pouvoir en alimente le flux d'entrée.

Advanced settings

Register Hive UDF jars

Ajoutez les .jar de fonctions personnalisées Hive que vous souhaitez que le tHiveInput utilise. Notez que vous devez définir un alias de fonction pour chaque fonction personnalisée à utiliser dans la table Temporary UDF functions.

Une fois cette ligne ajoutée à la table, cliquez dessus pour afficher le bouton [...], puis cliquez sur ce bouton pour afficher l'assistant d'import de .jar. Via cet assistant, importez les fichiers .jar des fonctions personnalisées que vous souhaitez utiliser.

Une fonction enregistrée est souvent utilisée dans une requête Hive que vous modifiez dans le champ Hive Query de la vue Basic settings. Notez que ce champ Hive Query est affiché uniquement lorsque vous sélectionnez Hive query dans la liste Input source.

Temporary UDF functions

Renseignez cette table pour donner à chaque classe de fonction personnalisée importée un nom fonctionnel temporaire à utiliser dans la requête Hive dans le tHiveInput courant.

Utilisation

Règle d'utilisation

Ce composant est utilisé en tant que composant de début et nécessite un lien de sortie.

Ce composant doit utiliser un tHiveConfiguration présent au sein du même Job pour se connecter à Hive.

Ce composant, ainsi que les composants Spark Streaming de la Palette à laquelle il appartient, s'affichent uniquement lorsque vous créez un Job Spark Streaming.

Notez que, dans cette documentation, sauf mention contraire, un scénario présente uniquement des Jobs Standard, c'est-à-dire des Jobs Talend traditionnels d'intégration de données.

Spark Connection

Vous devez utiliser l'onglet Spark Configuration dans la vue Run afin de définir la connexion à un cluster Spark donné pour le Job entier. De plus, puisque le Job attend ses fichiers .jar dépendants pour l'exécution, vous devez spécifier le répertoire du système de fichiers dans lequel ces fichiers .jar sont transférés afin que Spark puisse accéder à ces fichiers :
  • Yarn mode : lorsque vous utilisez Google Dataproc, spécifiez un bucket dans le champ Google Storage staging bucket de l'onglet Spark configuration. Lorsque vous utilisez d'autres distributions, utilisez un composant tHDFSConfiguration afin de spécifier le répertoire.

  • Standalone mode : vous devez choisir le composant de configuration selon le système de fichiers que vous utilisez, comme tHDFSConfiguration ou tS3Configuration.

Cette connexion fonctionne uniquement pour le Job dans lequel vous l'avez définie.