Transformer des données dans un environnement Spark - 7.0

Data mapping

author
Talend Documentation Team
EnrichVersion
7.0
EnrichProdName
Talend Big Data Platform
Talend Data Fabric
Talend Data Management Platform
Talend Data Services Platform
Talend MDM Platform
Talend Real-Time Big Data Platform
task
Création et développement > Systèmes tiers > Composants Processing (Intégration) > Mapping de données
Gouvernance de données > Systèmes tiers > Composants Processing (Intégration) > Mapping de données
Qualité et préparation de données > Systèmes tiers > Composants Processing (Intégration) > Mapping de données
EnrichPlatform
Studio Talend

Ce scénario s'applique uniquement aux solutions Talend Platform avec Big Data et Talend Data Fabric nécessitant souscription.

Pour plus d'informations concernant les technologies supportées par Talend, consultez Composants Talend.

Le scénario suivant présente un Job à deux composants, transformant des données dans un environnement Spark à l'aide d'un mapping précédemment créé dans Talend Data Mapper .

Le tHDFSConfiguration est utilisé dans ce scénario par Spark afin de se connecter au système HDFS où sont transférés les fichiers Jar dépendant du Job.

Dans l'onglet Spark Configuration de la vue Run, définissez la connexion à un cluster Spark donné pour le Job complet. De plus, puisque le Job attend ses fichiers .jar dépendants pour l'exécution, vous devez spécifier le répertoire du système de fichiers dans lequel ces fichiers .jar sont transférés afin que Spark puisse accéder à ces fichiers :
  • Yarn mode (Yarn Client ou Yarn Cluster) :
    • Lorsque vous utilisez Google Dataproc, spécifiez un bucket dans le champ Google Storage staging bucket de l'onglet Spark configuration.

    • Lorsque vous utilisez HDInsight, spécifiez le blob à utiliser pour le déploiement du Job, dans la zone Windows Azure Storage configuration de l'onglet Spark configuration.

    • Lorsque vous utilisez Altus, spécifiez le bucket S3 ou le stockage Azure Data Lake (apercu technique) pour le déploiement du Job, dans l'onglet Spark configuration.
    • Lorsque vous utilisez d'autres distributions, utilisez le composant de configuration correspondant au système de fichiers utilisé par votre cluster. Généralement, ce système est HDFS et vous devez utiliser le tHDFSConfiguration.

  • Standalone mode : vous devez choisir le composant de configuration selon le système de fichiers que vous utilisez, comme tHDFSConfiguration ou tS3Configuration.