Propriétés du tDataShuffling pour Apache Spark Batch - 7.0

Data privacy

author
Talend Documentation Team
EnrichVersion
7.0
EnrichProdName
Talend Big Data Platform
Talend Data Fabric
Talend Data Management Platform
Talend Data Services Platform
Talend MDM Platform
Talend Real-Time Big Data Platform
task
Création et développement > Systèmes tiers > Composants Data Quality > Composants de protection des données sensibles
Gouvernance de données > Systèmes tiers > Composants Data Quality > Composants de protection des données sensibles
Qualité et préparation de données > Systèmes tiers > Composants Data Quality > Composants de protection des données sensibles
EnrichPlatform
Studio Talend

Ces propriétés sont utilisées pour configurer le tDataShuffling s'exécutant dans le framework de Jobs Spark Batch.

Le composant tDataShuffling Spark Batch appartient à la famille Data Quality.

Le composant de ce framework est disponible dans tous les produits Talend Platform avec Big Data et dans Talend Data Fabric.

Basic settings

Schema et Edit Schema

Un schéma est une description de lignes. Il définit le nombre de champs (colonnes) à traiter et à passer au composant suivant. Lorsque vous créez un Job Spark, évitez le mot réservé line lors du nommage des champs.

Cliquez sur Sync columns pour récupérer le schéma du composant précédent dans le Job.

Modifiez le schéma en cliquant sur Edit Schema. Si le schéma est en mode Repository, trois options sont disponibles :

  • View schema : sélectionnez cette option afin de voir uniquement le schéma.

  • Change to built-in property : sélectionnez cette option pour passer le schéma en mode Built-In et effectuer des modifications locales.

  • Update repository connection : sélectionnez cette option afin de modifier le schéma stocké dans le référentiel et décider de propager ou non les modifications à tous les Jobs. Si vous souhaitez propager les modifications uniquement au Job courant, cliquez sur No et sélectionnez à nouveau la métadonnée du schéma dans la fenêtre [Repository Content].

 

Built-in : le schéma est créé et conservé localement pour ce composant seulement. scénario associé : consultez le Guide utilisateur du Studio Talend .

 

Repository : le schéma existe déjà et est stocké dans le Repository. Ainsi, il peut être réutilisé dans divers projets et Jobs. Scénario associé : consultez le Guide utilisateur du Studio Talend .

Shuffling columns

Définissez les groupes de colonnes à mélanger :

  • Column : sélectionnez les colonnes à mélanger.

  • Group ID : sélectionnez l'identifiant du groupe pour grouper les colonnes. Les colonnes ayant le même identifiant de groupe sont mélangées ensemble.

    Ce champ est configuré à 0 par défaut. Cela signifie que la colonne ne fait pas partie du processus de mélange.

Advanced settings

Seed for random generator

Configurez un nombre aléatoire si vous souhaitez mélanger les données dans le même ordre pour chaque exécution du Job. Ce champ est configuré par défaut à 12345678.

Répéter l'exécution avec une valeur différente pour ce champ mélange les données dans un ordre différent. Laissez ce champ vide si vous souhaitez que les données soit mélangées dans un ordre aléatoire à chaque exécution du Job.

Partitioning columns

Ajoutez les colonnes utilisées pour partitionner les données.

Les colonnes sélectionnées séparent les processus de mélange en petites partitions. Seules les lignes d'une même partition peuvent être mélangées.

Utilisation

Règle d'utilisation

Ce composant est utilisé comme étape intermédiaire.

Ce composant, ainsi que la Palette Spark Batch à laquelle il appartient, ne s'affiche que lorsque vous créez un Job Spark Batch.

Notez que, dans cette documentation, sauf mention contraire, un scénario présente uniquement des Jobs Standard, c'est-à-dire des Jobs Talend traditionnels d'intégration de données.

Connexion à Spark

Dans l'onglet Spark Configuration de la vue Run, définissez la connexion à un cluster Spark donné pour le Job complet. De plus, puisque le Job attend ses fichiers .jar dépendants pour l'exécution, vous devez spécifier le répertoire du système de fichiers dans lequel ces fichiers .jar sont transférés afin que Spark puisse accéder à ces fichiers :
  • Yarn mode (Yarn Client ou Yarn Cluster) :
    • Lorsque vous utilisez Google Dataproc, spécifiez un bucket dans le champ Google Storage staging bucket de l'onglet Spark configuration.

    • Lorsque vous utilisez HDInsight, spécifiez le blob à utiliser pour le déploiement du Job, dans la zone Windows Azure Storage configuration de l'onglet Spark configuration.

    • Lorsque vous utilisez Altus, spécifiez le bucket S3 ou le stockage Azure Data Lake (apercu technique) pour le déploiement du Job, dans l'onglet Spark configuration.
    • Lorsque vous utilisez d'autres distributions, utilisez le composant de configuration correspondant au système de fichiers utilisé par votre cluster. Généralement, ce système est HDFS et vous devez utiliser tHDFSConfiguration.

  • Standalone mode : vous devez choisir le composant de configuration selon le système de fichiers que vous utilisez, comme tHDFSConfiguration ou tS3Configuration.

Cette connexion fonctionne uniquement pour le Job dans lequel vous l'avez définie.