Propriétés du tNormalize pour Apache Spark Streaming - 6.4

Processing (Integration)

author
Talend Documentation Team
EnrichVersion
6.4
EnrichProdName
Talend Big Data
Talend Big Data Platform
Talend Data Fabric
Talend Data Integration
Talend Data Management Platform
Talend Data Services Platform
Talend ESB
Talend MDM Platform
Talend Open Studio for Big Data
Talend Open Studio for Data Integration
Talend Open Studio for ESB
Talend Open Studio for MDM
Talend Real-Time Big Data Platform
task
Création et développement > Systèmes tiers > Composants Processing (Intégration)
Gouvernance de données > Systèmes tiers > Composants Processing (Intégration)
Qualité et préparation de données > Systèmes tiers > Composants Processing (Intégration)
EnrichPlatform
Studio Talend

Ces propriétés sont utilisées pour configurer le tNormalize s'exécutant dans le framework de Jobs Spark Streaming.

Le composant tNormalize Spark Streaming appartient à la famille Processing.

Ce composant est disponible dansTalend Real Time Big Data Platform et dans Talend Data Fabric.

Basic settings

Schema et Edit Schema

Un schéma est une description de lignes, il définit le nombre de champs (colonnes) qui sont traités et passés au composant suivant. Le schéma est soit local (Built-In), soit distant dans le Repository.

Cliquez sur Edit schema pour modifier le schéma. Si le schéma est en mode Repository, trois options sont disponibles :

  • View schema : sélectionnez cette option afin de voir le schéma.

  • Change to built-in property : sélectionnez cette option pour passer le schéma en mode Built-In et effectuer des modifications locales.

  • Update repository connection : sélectionnez cette option afin de modifier le schéma stocké dans le référentiel et décider de propager ou non les modifications à tous les Jobs. Si vous souhaitez propager les modifications uniquement au Job courant, cliquez sur No et sélectionnez à nouveau la métadonnée du schéma dans la fenêtre [Repository Content].

 

Built-In : Le schéma est créé et conservé ponctuellement pour ce composant seulement. Voir également le Guide utilisateur du Studio Talend.

 

Repository : Le schéma existe déjà et il est stocké dans le Repository. Ainsi, il peut être réutilisé. Voir également le Guide utilisateur du Studio Talend.

Column to normalize

Sélectionnez la colonne du flux entrant sur laquelle est basée la normalisation.

Item separator

Renseignez le séparateur délimitant les données du flux entrant.
Remarque :

Le séparateur d'éléments se base sur des expressions régulières. Par conséquent, le caractère "." (caractère spécial dans les expressions régulières) doit être évité ou utilisé avec prudence.

Advanced settings

Use CSV parameters

Cochez cette case pour prendre en compte les paramètres spécifiques aux fichiers CSV, notamment la manière de protéger les caractères dans le champ escape mode et le type de guillemet dans le champ enclosure.

Discard the trailing empty strings

Cochez cette case pour ignorer les chaînes de caractères vides à la fin d'un groupe d'éléments.

Trim resulting values

Cochez cette case pour supprimer les espaces en début et en fin de champ des données de résultat.

Remarque :

Lorsque les cases Discard the trailing empty string et Trim resulting values sont cochées, le traitement de la première option s'effectue en premier.

Utilisation

Règle d'utilisation

Ce composant est utilisé comme étape intermédiaire.

Ce composant, ainsi que les composants Spark Streaming de la Palette à laquelle il appartient, s'affichent uniquement lorsque vous créez un Job Spark Streaming.

Notez que, dans cette documentation, sauf mention contraire, un scénario présente uniquement des Jobs de type Standard, c'est-à-dire des Jobs Talend traditionnels d'intégration de données.

Spark Connection

Vous devez utiliser l'onglet Spark Configuration de la vue Run afin de définir la connexion à un cluster Spark donné pour le Job complet. De plus, puisque le Job attend ses fichiers .jar dépendants pour l'exécution, vous devez spécifier le répertoire du système de fichiers dans lequel ces fichiers .jar sont transférés afin que Spark puisse accéder à ces fichiers :
  • Yarn mode : lorsque vous utilisez Google Dataproc, spécifiez un bucket dans le champ Google Storage staging bucket de l'onglet Spark configuration. Lorsque vous utilisez d'autres distributions, utilisez un composant tHDFSConfiguration afin de spécifier le répertoire.

  • Standalone mode : vous devez choisir le composant de configuration selon le système de fichiers que vous utilisez, comme tHDFSConfiguration ou tS3Configuration.

Cette connexion fonctionne uniquement pour le Job dans lequel vous l'avez définie.