Propriétés du tSqlRow dans des Jobs Spark Batch - 6.3

Composants Talend Guide de référence

EnrichVersion
6.3
EnrichProdName
Talend Big Data
Talend Big Data Platform
Talend Data Fabric
Talend Data Integration
Talend Data Management Platform
Talend Data Services Platform
Talend ESB
Talend MDM Platform
Talend Open Studio for Big Data
Talend Open Studio for Data Integration
Talend Open Studio for Data Quality
Talend Open Studio for ESB
Talend Open Studio for MDM
Talend Real-Time Big Data Platform
task
Création et développement
Gouvernance de données
Qualité et préparation de données
EnrichPlatform
Studio Talend

Famille du composant

Processing

 

 

Schema et Edit Schema

Un schéma est une description de lignes, il définit le nombre de champs (colonnes) qui sont traités et passés au composant suivant. Le schéma est soit local (Built-In), soit distant dans le Repository.

Cliquez sur Edit schema pour modifier le schéma. Si le schéma est en mode Repository, trois options sont disponibles :

  • View schema : sélectionnez cette option afin de voir le schéma.

  • Change to Built-In property : sélectionnez cette option pour passer le schéma en mode Built-In et effectuer des modifications locales.

  • Update repository connection : sélectionnez cette option afin de modifier le schéma stocké dans le référentiel et décider de propager ou non les modifications à tous les Jobs. Si vous souhaitez propager les modifications uniquement au Job courant, cliquez sur No et sélectionnez à nouveau la métadonnée du schéma dans la fenêtre [Repository Content].

 

 

Built-In : Le schéma est créé et conservé ponctuellement pour ce composant seulement. Voir également le Guide utilisateur du Studio Talend.

 

 

Repository : Le schéma existe déjà et il est stocké dans le Repository. Ainsi, il peut être réutilisé. Voir également le Guide utilisateur du Studio Talend.

 

SQL context

Sélectionnez les langages de requête que vous souhaitez que le tSqlRow utilise.

  • SQL Spark Context : langage natif de requêtes Spark.

  • SQL Hive Context : langage de requêtes Hive supporté par Spark.

    En mode SQL Hive Context, le tSqlRow ne vous permet pas d'utiliser le metastore de Hive. Si vous devez lire ou écrire des données dans le metastore Hive, utilisez les composants tHiveInput ou tHiveOutput à la place et, dans cette situation, vous devez créer différemment votre Job.

    Ce langage supporte la majorité des instructions Hive mais ne permet pas d'utiliser de metastore Hive. Si vous devez utiliser un metastore Hive dans votre requête, utilisez un tHiveInput au lieu d'un tSqlRow.

    Pour plus d'informations concernant les instructions de requêtes Hive supportées par Spark, consultez Supported Hive features (en anglais).

 

Query

Saisissez votre requête en faisant particulièrement attention à l'ordre des champs afin de correspondre à la définition du schéma.

Le composant tSqlRow utilise le libellé de son lien d'entrée pour nommer la table enregistrée stockant les jeux de données depuis le même lien d'entrée. Par exemple, si un lien d'entrée est nommé row1, ce row1 est automatiquement le nom de la table dans laquelle effectuer les requêtes.

Advanced settings

Register UDF jars

Ajoutez les .jar Spark SQL ou Hive SQL UDF (user-defined function, fonction personnalisée) que vous souhaitez que le tSqlRow utilise. Si vous ne souhaitez pas appeler votre fonction personnalisée à l'aide de son nom de classe complètement qualifié, vous devez définir un alias de fonction pour cette fonction personnalisée, dans la table Temporary UDF functions et utiliser cet alias. Il est recommandé d'utiliser l'approche de l'alias, car un alias est souvent pratique pour appeler une fonction personnalisée à partir d'une requête.

Une fois cette ligne ajoutée à la table, cliquez dessus pour afficher le bouton [...], puis cliquez sur ce bouton pour afficher l'assistant d'import de .jar. Via cet assistant, importez les fichiers .jar des fonctions personnalisées que vous souhaitez utiliser.

 

Temporary UDF functions

Renseignez cette table pour donner à chaque classe de fonction personnalisée importée un nom de fonction temporaire à utiliser dans la requête, dans le tSqlRow.

Si vous avez sélectionné SQL Spark Context dans la liste SQL context, la colonne UDF output type s'affiche. Dans cette colonne, vous devez sélectionner le type de données de sortie de la fonction personnalisée Spark SQL à utiliser.

 

Use Timestamp format for Date type

Cochez cette case pour écrire en sortie les dates, heures, minutes et secondes contenues dans vos données de type Date. Si vous décochez cette case, seuls les années, les mois et les jours sont écrits en sortie.

Utilisation dans des Jobs Spark Batch

Ce composant est utilisé comme étape intermédiaire.

Ce composant, ainsi que la Palette Spark Batch à laquelle il appartient, ne s'affiche que lorsque vous créez un Job Spark Batch.

Notez que, dans cette documentation, sauf mention contraire, un scénario présente uniquement des Jobs Standard, c'est-à-dire des Jobs Talend traditionnels d'intégration de données.

Log4j

Si vous utilisez une solution Talend soumise à souscription, l'activité de ce composant peut être journalisée avec la fonctionnalité log4j. Pour plus d'informations sur cette fonctionnalité, consultez le Guide utilisateur du Studio Talend.

Pour plus d'informations sur les niveaux de logs du log4j, consultez la documentation d'Apache : http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/Level.html (en anglais).

Spark Connection

Vous devez utiliser l'onglet Spark Configuration de la vue Run afin de définir la connexion à un cluster Spark donné pour le Job complet. De plus, puisque le Job attend ses fichiers .jar dépendants pour l'exécution, un (et un seul) composant relatif à un système de fichiers de la famille Storage est requis au sein du même Job, afin que Spark puisse utiliser ce composant pour se connecter au système de fichiers auquel les fichiers .jar dépendants du Job sont transférés :

Cette connexion fonctionne uniquement pour le Job dans lequel vous l'avez définie.