Propriétés du tFileInputXML dans des Jobs Spark Batch - 6.3

Composants Talend Guide de référence

EnrichVersion
6.3
EnrichProdName
Talend Big Data
Talend Big Data Platform
Talend Data Fabric
Talend Data Integration
Talend Data Management Platform
Talend Data Services Platform
Talend ESB
Talend MDM Platform
Talend Open Studio for Big Data
Talend Open Studio for Data Integration
Talend Open Studio for Data Quality
Talend Open Studio for ESB
Talend Open Studio for MDM
Talend Real-Time Big Data Platform
task
Création et développement
Gouvernance de données
Qualité et préparation de données
EnrichPlatform
Studio Talend

Famille du composant

File / Input

 

Basic settings

Define a storage configuration component

Sélectionnez le composant de configuration à utiliser pour fournir les informations de configuration pour la connexion au système de fichiers cible, comme HDFS.

Si vous laissez cette case décochée, le système de fichiers cible est le système local.

Notez que le composant de configuration à utiliser doit se trouver dans le même Job. Par exemple, si vous avez ajouté un tHDFSConfiguration dans votre Job, vous pouvez le sélectionner pour écrire le résultat dans un système HDFS donné.

 

Property type

Peut être Built-In ou Repository.

 

 

- Built-In : Propriétés utilisées ponctuellement.

 

 

- Repository : Sélectionnez le fichier dans lequel sont stockées les propriétés du composant.

Les propriétés sont stockées centralement sous le nœud Hadoop Cluster de la vue Repository.

Les champs suivants sont pré-renseignés avec les données récupérées.

Pour plus d'informations concernant le nœud Hadoop Cluster, consultez le Guide de prise en main de Talend Big Data.

 

Schema et Edit Schema

Un schéma est une description de lignes, il définit le nombre de champs (colonnes) qui sont traités et passés au composant suivant. Le schéma est soit local (Built-In), soit distant dans le Repository.

Cliquez sur Edit schema pour modifier le schéma. Si le schéma est en mode Repository, trois options sont disponibles :

  • View schema : sélectionnez cette option afin de voir le schéma.

  • Change to Built-In property : sélectionnez cette option pour passer le schéma en mode Built-In et effectuer des modifications locales.

  • Update repository connection : sélectionnez cette option afin de modifier le schéma stocké dans le référentiel et décider de propager ou non les modifications à tous les Jobs. Si vous souhaitez propager les modifications uniquement au Job courant, cliquez sur No et sélectionnez à nouveau la métadonnée du schéma dans la fenêtre [Repository Content].

 

 

Built-In : Le schéma est créé et conservé ponctuellement pour ce composant seulement. Voir également le Guide utilisateur du Studio Talend.

 

 

Repository : Le schéma existe déjà et il est stocké dans le Repository. Ainsi, il peut être réutilisé. Voir également le Guide utilisateur du Studio Talend.

 

Folder/File

Parcourez votre système ou saisissez le chemin d'accès aux données à utiliser dans le système de fichiers.

Si le chemin d'accès défini pointe vers un dossier, ce composant lit tous les fichiers stockés dans le dossier, par exemple /user/talend/in. Si les sous-dossiers existent, ils sont automatiquement ignorés, sauf si vous définissez la propriété spark.hadoop.mapreduce.input.fileinputformat.input.dir.recursive à true dans la table Advanced properties, dans l'onglet Hadoop configuration.

Si vous souhaitez spécifier plus d'un fichier ou répertoire dans ce champ, séparez chaque chemin d'accès par une virgule (,).

Si le fichier à lire est un fichier compressé, saisissez son nom et son extension. Ce composant décompresse automatiquement le fichier lors de l'exécution. Les formats de compression supportés et leur extension sont :

  • DEFLATE : *.deflate

  • gzip : *.gz

  • bzip2 : *.bz2

  • LZO : *.lzo

Le bouton pour parcourir votre système ne fonctionne pas en mode Local de Spark. Si vous utilisez le mode Yarn ou Standalone de Spark, assurez-vous d'avoir correctement configuré la connexion dans un composant de configuration au sein du même Job, comme le tHDFSConfiguration.

 

Element to extract

Saisissez l'élément duquel lire le contenu ainsi que les éléments fils des données XML d'entrée.

L'élément défini dans ce champ est utilisé au nœud racine d'un XPath spécifié dans le composant. Cet élément vous permet de définir les unités atomiques des données XML à utiliser afin que, quelle que soit la taille du document original ou quel que soit l'endroit où l'entrée est divisée, les lignes dans l'élément puissent correctement être distribuées aux tâches du mappeur.

Tout contenu en dehors de cet élément est ignoré et les éléments fils de cet élément ne peuvent contenir l'élément lui-même.

 

Loop XPath query

Nœud de l'arborescence sur lequel se base la boucle.

Sa racine est l'élément défini dans le champ Element to extract.

 

Mapping

Column : colonnes à mapper. Elles reflètent le schéma comme défini dans le champ Schema type.

XPath Query : saisissez les champs à extraire de l'entrée structurée.

Get nodes : cochez cette case pour récupérer le contenu XML de tous les nœuds courants spécifiés dans la liste Xpath query, ou cochez la case à côté des nœuds XML spécifiques afin de récupérer uniquement le contenu des nœuds sélectionnés. Ces nœuds sont importants lorsque le flux d'entrée de ce composant doit utiliser la structure XML, par exemple le type de données Document.

Pour plus d'informations concernant le type Document, consultez le Guide utilisateur du Studio Talend.

 

Die on error

Cochez cette case pour arrêter l'exécution du Job lorsqu'une erreur survient.

Advanced settings

Set minimum partitions

Cochez cette case pour contrôler le nombre de partitions à créer à partir des données d'entrée, pour ignorer le comportement de partitionnement par défaut de Spark.

Dans le champ qui s'affiche, saisissez, sans guillemet, le nombre minimal de partitions à obtenir.

Lorsque vous souhaitez contrôler le nombre de partitions, vous pouvez généralement configurer autant de partitions qu'il y a d'exécuteurs pour un traitement en parallèle, tout en gardant à l'esprit la mémoire disponible et l'utilisation de votre réseau par le transfert de données.

Custom encoding

Il est possible de rencontrer des problèmes d'encodage lorsque vous traitez les données stockées. Dans ce cas, cochez cette case pour afficher la liste Encoding.

Sélectionnez l'encodage à partir de la liste ou sélectionnez Custom et définissez-le manuellement. Ce champ est obligatoire pour la gestion de données de bases de données.

Utilisation dans des Jobs Spark Batch

Ce composant est utilisé comme composant de début et requiert un lien de sortie.

Ce composant, ainsi que la Palette Spark Batch à laquelle il appartient, ne s'affiche que lorsque vous créez un Job Spark Batch.

Notez que, dans cette documentation, sauf mention contraire, un scénario présente uniquement des Jobs Standard, c'est-à-dire des Jobs Talend traditionnels d'intégration de données.

Log4j

Si vous utilisez une solution Talend soumise à souscription, l'activité de ce composant peut être journalisée avec la fonctionnalité log4j. Pour plus d'informations sur cette fonctionnalité, consultez le Guide utilisateur du Studio Talend.

Pour plus d'informations sur les niveaux de logs du log4j, consultez la documentation d'Apache : http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/Level.html (en anglais).

Spark Connection

Vous devez utiliser l'onglet Spark Configuration de la vue Run afin de définir la connexion à un cluster Spark donné pour le Job complet. De plus, puisque le Job attend ses fichiers .jar dépendants pour l'exécution, un (et un seul) composant relatif à un système de fichiers de la famille Storage est requis au sein du même Job, afin que Spark puisse utiliser ce composant pour se connecter au système de fichiers auquel les fichiers .jar dépendants du Job sont transférés :

Cette connexion fonctionne uniquement pour le Job dans lequel vous l'avez définie.