Propriétés du tStandardizeRow dans des Jobs Spark Streaming - 6.3

Composants Talend Guide de référence

EnrichVersion
6.3
EnrichProdName
Talend Big Data
Talend Big Data Platform
Talend Data Fabric
Talend Data Integration
Talend Data Management Platform
Talend Data Services Platform
Talend ESB
Talend MDM Platform
Talend Open Studio for Big Data
Talend Open Studio for Data Integration
Talend Open Studio for Data Quality
Talend Open Studio for ESB
Talend Open Studio for MDM
Talend Real-Time Big Data Platform
task
Création et développement
Gouvernance de données
Qualité et préparation de données
EnrichPlatform
Studio Talend

Famille du composant

Data Quality

 

Basic settings

Schema et Edit schema

Un schéma est une description de lignes, il définit le nombre de champs (colonnes) qui sont traités et passés au composant suivant. Le schéma est soit local (Built-In), soit distant dans le Repository.

  

Built-In : Le schéma est créé et conservé ponctuellement pour ce composant seulement. Voir également le Guide utilisateur du Studio Talend.

 

 

Repository : Le schéma existe déjà et il est stocké dans le Repository. Ainsi, il peut être réutilisé. Voir également le Guide utilisateur du Studio Talend.

 

Column to parse

Sélectionnez la colonne à analyser à partir du flux de données reçu.

 

Standardize this field

Cochez cette case pour standardiser les données identifiées comme conformes à la règle, c'est-à-dire remplacer les doublons de données identifiés par les données standardisées correspondantes à partir d'un index donné.

Pour plus d'informations concernant l'index de ces données standardisées, consultez tSynonymOutput.

Chaque fois que vous cochez ou décochez cette case, le schéma de ce composant est modifié automatiquement. De ce fait, dans un Job donné, vous devez cliquer sur le bouton Sync columns afin de régler les problèmes d'incohérence du schéma.

 

Generate analyzer code as routine

Cliquez sur ce bouton pour permettre à l'analyseur de données de votre Studio Talend de générer le code des règles définies dans le tableau Conversion rules.

Dans un Job donné, lorsqu'une règle est créée, cette opération est nécessaire pour son exécution. En revanche, si une simple modification est effectuée sur la règle existante, cette opération est nécessaire uniquement lorsque la règle modifiée est de type Enumeration, Format ou Combination. Pour plus d'informations concernant les types de règles, consultez Types de règles.

 

et

Cliquez sur le bouton d'import ou d'export pour sélectionner une règle donnée de standardisation depuis le DQ Repository.

- Lorsque vous cliquez sur le bouton d'export, votre studio passe en perspective Profiling et la vue Parser rule Settings s'ouvre dans l'espace de travail avec son contenu automatiquement renseigné. Si nécessaire, vous pouvez modifier la règle exportée et la sauvegarder dans le dossier Libraries > Rules > Parser de la vue DQ Repository.

- Lorsque vous cliquez sur le bouton d'import, un assistant d'import s'ouvre et vous permet d'importer la règle de standardisation souhaitée.

Pour plus d'informations, consultez le Guide utilisateur du Studio Talend.

 

Conversion rules

Définissez les règles que vous souhaitez appliquer, comme suit :

- dans la colonne Name, saisissez un nom pour la règle que vous souhaitez utiliser. Ce nom est utilisé comme balise XML ou nom d'attribut JSON et comme nom du jeton libellant les données entrantes identifiées par cette règle.

- dans la colonne Type, sélectionnez le type de règle que vous souhaitez appliquer. Pour plus d'informations concernant les types de règles disponibles, consultez Types de règles.

- dans la colonne Value, saisissez la syntaxe de la règle.

- dans la colonne Search mode, sélectionnez un mode de recherche dans la liste. Les modes de recherche peuvent être utilisés uniquement avec le type de règle Index. Pour plus d'informations concernant les modes de recherche disponibles, consultez Modes de recherche pour les règles d'Index.

Une vue de test est fournie pour vous permettre de créer les analyseurs syntaxiques qui vous intéressent. Pour plus d'informations, consultez le Guide utilisateur du Studio Talend.

Advanced settings

Advanced options for INDEX rules

- Search UNDEFINED fields : cochez cette case si vous souhaitez que le composant recherche des enregistrements indéfinis dans les résultats de l'exécution de l'index.

- Word distance for partial match (disponible pour le mode Match partial) : définissez le nombre maximal de mots autorisés dans une séquence de mots pouvant être trouvée dans l'index. La valeur par défaut est 1.

- Max edits for fuzzy match (basé sur l'algorithme de Levenshtein et disponibles pour les modes Fuzzy) : sélectionnez une distance de modification, 1 ou 2, dans la liste. Tout terme au sein de la distance de modification depuis les données d'entrée est mis en correspondance. Avec une distance maximale de modification de 2, par exemple, vous pouvez effectuer 2 insertions, suppressions ou substitutions. Le score de chaque mise en correspondance se base sur la distance de modification de ce terme.

Les performances de la mise en correspondance floue sont nettement améliorées avec l'option Max edits for fuzzy match.

Note

Les Jobs migrés dans le Studio depuis d'anciennes versions s'exécutent correctement, mais les résultats peuvent être légèrement différents, car l'option Max edits for fuzzy match est utilisée à la place de l'option Minimum similarity for fuzzy match.

Output format

-XML : cette option est sélectionnée par défaut. Elle écrit en sortie des données normalisées au format XML.

-JSON : sélectionnez cette option pour écrire en sortie des données normalisées au format JSON.

Connexions

Liens de sortie (de ce composant à un autre) :

Row : Main, Reject

Liens d'entrée (d'un composant à celui-ci) :

Row : Main, Reject

Pour plus d'informations concernant les connexions, consultez le Guide utilisateur du Studio Talend.

Utilisation dans des Jobs Spark Streaming

Ce composant, ainsi que les composants Spark Streaming de la Palette à laquelle il appartient, s'affichent uniquement lorsque vous créez un Job Spark Streaming.

Ce composant est utilisé comme étape intermédiaire.

Vous devez utiliser l'onglet Spark Configuration dans la vue Run afin de définir la connexion à un cluster Spark donné pour le Job entier.

Cette connexion fonctionne uniquement pour le Job dans lequel vous l'avez définie.

Pour plus d'informations concernant les Jobs Talend Spark Streaming, consultez les sections décrivant comment créer, convertir et configurer un Job Talend Spark Streaming dans le Guide de prise en main de Talend Big Data.

Notez que, dans cette documentation, sauf mention contraire, un scénario présente uniquement des Jobs Standard, c'est-à-dire des Jobs Talend traditionnels d'intégration de données.

Log4j

Si vous utilisez une solution Talend soumise à souscription, l'activité de ce composant peut être journalisée avec la fonctionnalité log4j. Pour plus d'informations sur cette fonctionnalité, consultez le Guide utilisateur du Studio Talend.

Pour plus d'informations sur les niveaux de logs du log4j, consultez la documentation d'Apache : http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/Level.html (en anglais).

Connexion à Spark

Vous devez utiliser l'onglet Spark Configuration de la vue Run afin de définir la connexion à un cluster Spark donné pour le Job complet. De plus, puisque le Job attend ses fichiers .jar dépendants pour l'exécution, un (et un seul) composant relatif à un système de fichiers de la famille Storage est requis au sein du même Job, afin que Spark puisse utiliser ce composant pour se connecter au système de fichiers auquel les fichiers .jar dépendants du Job sont transférés :

Cette connexion fonctionne uniquement pour le Job dans lequel vous l'avez définie.