Propriétés du tMatchPredict dans des Jobs Spark Batch - 6.3

Composants Talend Guide de référence

EnrichVersion
6.3
EnrichProdName
Talend Big Data
Talend Big Data Platform
Talend Data Fabric
Talend Data Integration
Talend Data Management Platform
Talend Data Services Platform
Talend ESB
Talend MDM Platform
Talend Open Studio for Big Data
Talend Open Studio for Data Integration
Talend Open Studio for Data Quality
Talend Open Studio for ESB
Talend Open Studio for MDM
Talend Real-Time Big Data Platform
task
Création et développement
Gouvernance de données
Qualité et préparation de données
EnrichPlatform
Studio Talend

Famille du composant

Data Quality

 

Basic settings

Define a storage configuration component

Sélectionnez le composant de configuration à utiliser pour fournir les informations de configuration pour la connexion au système de fichiers cible, comme HDFS.

Si vous laissez cette case décochée, le système de fichiers cible est le système local.

Notez que le composant de configuration à utiliser doit se trouver dans le même Job. Par exemple, si vous avez ajouté un tHDFSConfiguration dans votre Job, vous pouvez le sélectionner pour écrire le résultat dans un système HDFS donné.

 

Schema et Edit Schema

Un schéma est une description de lignes, il définit le nombre de champs (colonnes) qui sont traités et passés au composant suivant. Le schéma est soit local (Built-In), soit distant dans le Repository.

Depuis la version 5.6, les modes Built-In et Repository sont disponibles dans toutes les solutions de Talend.

Cliquez sur le bouton Sync columns pour récupérer le schéma du composant précédent.

Cliquez sur Edit schema pour modifier le schéma. Si le schéma est en mode Repository, trois options sont disponibles :

  • View schema : sélectionnez cette option afin de voir le schéma.

  • Change to Built-In property : sélectionnez cette option pour passer le schéma en mode Built-In et effectuer des modifications locales.

  • Update repository connection : sélectionnez cette option afin de modifier le schéma stocké dans le référentiel et décider de propager ou non les modifications à tous les Jobs. Si vous souhaitez propager les modifications uniquement au Job courant, cliquez sur No et sélectionnez à nouveau la métadonnée du schéma dans la fenêtre [Repository Content].

Le schéma de sortie de ce composant comporte des colonnes en lecture seule dans ses liens de sortie :

LABEL : utilisée uniquement avec le lien de sortie Suspect duplicates. Elle contient les libellés de prédiction.

COUNT : utilisée uniquement avec le lien de sortie Exact duplicates. Elle contient le nombre de doublons exacts.

GROUPID : utilisée uniquement avec le lien de sortie Suspect duplicates. Elle contient les identifiants des groupes.

 

 

Built-In : Le schéma est créé et conservé ponctuellement pour ce composant seulement. Voir également le Guide utilisateur du Studio Talend.

 

 

Repository : Le schéma existe déjà et il est stocké dans le Repository. Ainsi, il peut être réutilisé. Voir également le Guide utilisateur du Studio Talend.

 

Pairing

Dans la liste Input type, sélectionnez :

paired : pour utiliser en entrée les doublons suspects générés par le tMatchPairing.

unpaired : pour utiliser en entrée un nouveau jeu de données n'ayant pas été appairé par le tMatchPairing.

Pairing model folder : (disponible uniquement avec le type d'entrée unpaired) configurez le chemin d'accès au dossier contenant les fichiers de modèles générés par le composant tMatchPairing.

Le bouton pour parcourir votre système ne fonctionne pas en mode Local de Spark. Si vous utilisez le mode Yarn ou Standalone de Spark, assurez-vous d'avoir correctement configuré la connexion dans un composant de configuration au sein du même Job, comme le tHDFSConfiguration.

Pour plus d'informations, consultez tMatchPairing.

 

Matching

Matching model location : Sélectionnez dans la liste l'emplacement du fichier modèle généré par le Job de classification à l'aide du composant tMatchModel.

-from file system : Configurez le chemin d'accès du dossier où le fichier modèle est généré par le composant de classification. Le composant peut stocker le modèle dans n'importe quel système de fichiers. Pour plus d'informations, consultez tMatchModel.

-from current Job : Configurez le nom du fichier modèle généré par le composant de classification. Vous pouvez utiliser cette option uniquement si le Job de classification avec le composant tMatchModel est intégré dans le Job à l'aide du composant tMatchPredict.

Matching model folder : Configurez le chemin d'accès au dossier contenant les fichiers de modèles générés par le tMatchModel.

Le bouton pour parcourir votre système ne fonctionne pas en mode Local de Spark. Si vous utilisez le mode Yarn ou Standalone de Spark, assurez-vous d'avoir correctement configuré la connexion dans un composant de configuration au sein du même Job, comme le tHDFSConfiguration.

Pour plus d'informations, consultez tMatchModel.

 

Clustering classes

Ajoutez à la table un ou plusieurs libellé(s) utilisé(s) sur les échantillons suspects générés par le tMatchPairing. Assurez-vous d'utiliser le même texte.

Le composant groupe ensuite les enregistrements suspects correspondant au(x) libellé(s) configuré(s) dans la table.

Si vous avez libellé un échantillon d'enregistrements suspects à l'aide de Talend Data Stewardship, ajoutez la ou les réponses définies dans la campagne de regroupement, à la table.

Ce champ est sensible à la casse.

Advanced settings

Use Timestamp format for Date type

Cochez cette case pour écrire en sortie les dates, heures, minutes et secondes contenues dans vos données de type Date. Si vous décochez cette case, seuls les années, les mois et les jours sont écrits en sortie.

Utilisation dans des Jobs Spark Batch

Ce composant est utilisé comme étape intermédiaire.

Ce composant, ainsi que la Palette Spark Batch à laquelle il appartient, ne s'affiche que lorsque vous créez un Job Spark Batch.

Notez que, dans cette documentation, sauf mention contraire, un scénario présente uniquement des Jobs Standard, c'est-à-dire des Jobs Talend traditionnels d'intégration de données.

Connexion à Spark Batch

Vous devez utiliser l'onglet Spark Configuration de la vue Run afin de définir la connexion à un cluster Spark donné pour le Job complet. De plus, puisque le Job attend ses fichiers .jar dépendants pour l'exécution, un (et un seul) composant relatif à un système de fichiers de la famille Storage est requis au sein du même Job, afin que Spark puisse utiliser ce composant pour se connecter au système de fichiers auquel les fichiers .jar dépendants du Job sont transférés :

Cette connexion fonctionne uniquement pour le Job dans lequel vous l'avez définie.

Log4j

Si vous utilisez une solution Talend soumise à souscription, l'activité de ce composant peut être journalisée avec la fonctionnalité log4j. Pour plus d'informations sur cette fonctionnalité, consultez le Guide utilisateur du Studio Talend.

Pour plus d'informations sur les niveaux de logs du log4j, consultez la documentation d'Apache : http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/Level.html (en anglais).