tMapRStreamsOutput - 6.3

Composants Talend Guide de référence

EnrichVersion
6.3
EnrichProdName
Talend Big Data
Talend Big Data Platform
Talend Data Fabric
Talend Data Integration
Talend Data Management Platform
Talend Data Services Platform
Talend ESB
Talend MDM Platform
Talend Open Studio for Big Data
Talend Open Studio for Data Integration
Talend Open Studio for Data Quality
Talend Open Studio for ESB
Talend Open Studio for MDM
Talend Real-Time Big Data Platform
task
Création et développement
Gouvernance de données
Qualité et préparation de données
EnrichPlatform
Studio Talend

Fonction

Ce composant reçoit des messages sérialisés en tableaux (byte arrays) par le composant précédent et envoie ces messages à un système MapR Streams donné.

Objectif

Le composant tMapRStreamsOutput publie des messages dans un système MapR Streams donné. Ce composant supporte uniquement les versions 5.2 et suivantes de MapR.

Selon la solution Talend que vous utilisez, ce composant peut être utilisé dans un framework de Jobs, dans plusieurs, ou dans tous les frameworks :

Propriétés du tMapRStreamsOutput

Famille du composant

Internet/MapR Streams

 

Basic settings

Schema et Edit schema

Un schéma est une description de lignes, il définit le nombre de champs (colonnes) qui sont traités et passés au composant suivant. Le schéma est soit local (Built-In), soit distant dans le Repository.

Notez que le schéma de ce composant est en lecture seule. Il stocke les messages à publier.

 

Use an existing connection

Cochez cette case et, dans la liste qui s'affiche, sélectionnez le composant de connexion permettant de réutiliser les informations de connexion précédemment définies.

 

Distribution et Version

Sélectionnez la distribution MapR à utiliser. Seules les versions 5.2 et supérieures de MapR sont supportées par les composants MapRDB.

Si la distribution que vous devez utiliser pour votre base de données MapRDB n'est pas officiellement supportée par ce composant MapRBD, c'est-à-dire, si la distribution de MapR ne s'affiche pas dans la liste déroulante Version de ce composant ou si cette distribution n'est pas MapR, sélectionnez Custom.

Pour vous connecter à une distribution personnalisée, une fois l'option Custom sélectionnée, cliquez sur le bouton pour afficher une fenêtre, dans laquelle vous pouvez :

  1. Sélectionner Import from existing version pour importer une distribution de base officiellement supportée et ajouter manuellement les autres Jars requis non fournis par cette distribution. Ou,

  2. Sélectionner Import from zip pour importer le fichier .zip de configuration pour la distribution personnalisée à utiliser. Ce fichier zip doit contenir les bibliothèques des différents éléments Hadoop et le fichier d'index de ces bibliothèques.

    Dans Talend Exchange, des membres de la Communauté Talend ont partagé des fichiers zip de configuration prêts à utiliser, que vous pouvez télécharger depuis cette liste Hadoop configuration et utiliser directement dans votre connexion. Cependant, avec l'évolution en continu des différents projets relatifs à Hadoop, il est possible que vous ne trouviez pas dans la liste le zip de configuration correspondant à votre distribution. Il est alors recommandé d'utiliser l'option Import from existing version, afin de se baser sur une distribution existante pour ajouter les .jars requis par votre distribution.

    Notez que certaines versions personnalisées ne sont pas officiellement supportées par Talend. Talend et sa Communauté fournissent l'opportunité de vous connecter à des versions personnalisées depuis le Studio mais ne peuvent garantir que la configuration de la version choisie sera simple, car de nombreuses versions et distributions d'Hadoop différentes sont disponibles. Il est recommandé de configurer une telle connexion uniquement si vos connaissances relatives à Hadoop sont suffisantes pour réparer les problèmes par vous-même.

    Note

    Dans cette boîte de dialogue, la case de la zone active doit être cochée, afin d'importer les fichiers .jar correspondant à la connexion créée entre la distribution personnalisée et ce composant.

    Pour un exemple étape par étape expliquant comment se connecter à une distribution personnalisée et partager cette connexion, consultez Connexion à une distribution Hadoop personnalisée.

 Topic name

Saisissez le nom du topic dans lequel vous souhaitez publier les messages. Ce topic doit déjà exister. Vous devez saisir le nom du flux auquel appartient ce topic. La syntaxe est la suivante : chemin_du_flux:nom_du_topic

 

Compress the data

Cochez la case Compress the data afin de compresser les données de sortie.

Advanced settings

Producer properties

Ajoutez dans cette table les propriétés producteur MapR Streams Kafka à personnaliser.

Pour plus d'informations concernant la configuration du producteur que vous pouvez définir dans cette table, consultez la section décrivant les propriétés importantes de configuration du producteur pour MapR Streams dans la documentation MapR à l'adresse MapR Streams Overview (en anglais).

 

tStatCatcher Statistics

Cochez cette case pour rassembler les métadonnées de traitement auu niveau du Job ainsi qu'au niveau de chaque composant.

Global Variables

ERROR_MESSAGE : message d'erreur généré par le composant lorsqu'une erreur survient. Cette variable est une variable After et retourne une chaîne de caractères. Cette variable fonctionne uniquement si la case Die on error est décochée, si le composant a cette option.

Une variable Flow fonctionne durant l'exécution d'un composant. Une variable After fonctionne après l'exécution d'un composant.

Pour renseigner un champ ou une expression à l'aide d'une variable, appuyez sur les touches Ctrl+Espace pour accéder à la liste des variables. A partir de cette liste, vous pouvez choisir la variable que vous souhaitez utiliser.

Pour plus d'informations concernant les variables, consultez le Guide utilisateur du Studio Talend.

Utilisation

Ce composant est un composant de fin. Il nécessite un tJavaRow ou un tJava pour transformer les données entrantes en tableaux (byte arrays) sérialisés.

L'exemple suivant vous montre comment construire une instruction pour effectuer cette transformation :

output_row.serializedValue = input_row.users.getBytes();

Dans ce code, la variable output_row représente le schéma des données à écrire en sortie dans le tMapRStreamsOutput et output_row.serializedValue la colonne unique en lecture seule de ce schéma. La variable input_row représente le schéma des données entrantes et input_row.users la colonne d'entrée nommée users à transformer en tableaux (byte arrays) par la méthode getBytes().

Prérequis

La distribution Hadoop doit être correctement installée afin de garantir les interactions avec le Studio Talend. La liste suivante présente des informations d'exemple relatives à MapR.

  • Assurez-vous d'avoir installé le client MapR sur la même machine que le Studio Talend et d'avoir ajouté la bibliothèque client de MapR dans la variable PATH de cette machine. D'après la documentation de MapR, la ou les librairies du client MapR correspondant à chaque OS peuvent être trouvées MAPR_INSTALL\ hadoop\hadoop-VERSION\lib\native. Par exemple, pour Windows, la bibliothèque est lib\MapRClient.dll dans le fichier Jar du client MapR. Pour plus d'informations, consultez la page suivante sur le site de MapR : http://www.mapr.com/blog/basic-notes-on-configuring-eclipse-as-a-hadoop-development-environment-for-mapr (en anglais).

    Si vous n'ajoutez pas de librairie, il est possible que vous rencontriez l'erreur suivante : no MapRClient in java.library.path.

  • Configurez l'argument -Djava.library.path, par exemple, dans la zone Job Run VM arguments de la vue Run/Debug de la boîte de dialogue [Preferences] dans le menu Window. Cet argument fournit au studio le chemin d'accès à la bibliothèque native du client MapR. Cela permet aux utilisateurs en souscription d'utiliser entièrement l'aperçu des données (Data viewer) afin de visualiser localement dans le studio les données stockées dans MapR.

Pour plus d'informations concernant l'installation d'une distribution Hadoop, consultez le manuel correspondant à la distribution Hadoop que vous utilisez.

Scénario associé

Aucun scénario n'est disponible pour la version Standard de ce composant.

Propriétés du tMapRStreamsOutput dans des Jobs Spark Streaming

Famille du composant

Messaging/MapR Streams

 

Basic settings

Schema et Edit schema

Un schéma est une description de lignes, il définit le nombre de champs (colonnes) qui sont traités et passés au composant suivant. Le schéma est soit local (Built-In), soit distant dans le Repository.

Note that the schema of this component is read-only. It stores the messages to be published.

 Topic name

Saisissez le nom du topic dans lequel vous souhaitez publier les messages. Ce topic doit déjà exister. Vous devez saisir le nom du flux auquel appartient ce topic. La syntaxe est la suivante : chemin_du_flux:nom_du_topic

 

Compress the data

Cochez la case Compress the data afin de compresser les données de sortie.

Advanced settings

Producer properties

Ajoutez dans cette table les propriétés producteur MapR Streams Kafka à personnaliser.

Pour plus d'informations concernant la configuration du producteur que vous pouvez définir dans cette table, consultez la section décrivant les propriétés importantes de configuration du producteur pour MapR Streams dans la documentation MapR à l'adresse MapR Streams Overview (en anglais).

 

Connection pool

Dans cette zone, configurez, pour chaque exécuteur Spark, le pool de connexions utilisé pour contrôler le nombre de connexions qui restent ouvertes simultanément. Généralement, les valeurs par défaut données aux paramètres suivants du pool de connexion conviennent à la plupart des cas d'utilisation.

  • Max total number of connections : saisissez le nombre maximal de connexions (actives ou inactives) autorisées à rester ouvertes simultanément.

    Le nombre par défaut est 8. Si vous saisissez -1, vous autorisez un nombre illimité de connexions ouvertes simultanément.

  • Max waiting time (ms) : saisissez le temps maximum d'attente à la fin duquel la réponse à une demande d'utilisation de connexion doit être retournée par le pool de connexion. Par défaut, la valeur est -1, c'est-à-dire un temps illimité.

  • Min number of idle connections : saisissez le nombre minimal de connexions inactives (connexions non utilisées) maintenues dans le pool de connexions.

  • Max number of idle connections : saisissez le nombre maximal de connexions inactives (connexions non utilisées) maintenues dans le pool de connexions.

 

Evict connections

Cochez cette case pour définir les critères de destruction de connexions dans le pool de connexions. Les champs suivants sont affichés une fois la case cochée.

  • Time between two eviction runs : saisissez l'intervalle de temps (en millisecondes) à la fin duquel le composant vérifie le statut des connexions et détruit les connexions inactives.

  • Min idle time for a connection to be eligible to eviction : saisissez l'intervalle de temps (en millisecondes) à la fin duquel les connexions inactives sont détruites.

  • Soft min idle time for a connection to be eligible to eviction : ce paramètre fonctionne de la même manière que l'option Min idle time for a connection to be eligible to eviction mais garde le nombre minimal de connexions inactives, nombre défini dans le champ Min number of idle connections.

Utilisation dans des Jobs Spark Streaming

Ce composant est utilisé en tant que composant de fin et nécessite un lien d'entrée.

Ce composant requiert un composant d'écriture (Write) comme le tWriteJSONField pour définir une colonne serializedValue dans le schéma d'entrée, afin d'envoyer des données sérialisées.

Connexion à Spark

Vous devez utiliser l'onglet Spark Configuration de la vue Run afin de définir la connexion à un cluster Spark donné pour le Job complet. De plus, puisque le Job attend ses fichiers .jar dépendants pour l'exécution, un (et un seul) composant relatif à un système de fichiers de la famille Storage est requis au sein du même Job, afin que Spark puisse utiliser ce composant pour se connecter au système de fichiers auquel les fichiers .jar dépendants du Job sont transférés :

Cette connexion fonctionne uniquement pour le Job dans lequel vous l'avez définie.

Prérequis

La distribution Hadoop doit être correctement installée afin de garantir les interactions avec le Studio Talend. La liste suivante présente des informations d'exemple relatives à MapR.

  • Assurez-vous d'avoir installé le client MapR sur la même machine que le Studio Talend et d'avoir ajouté la bibliothèque client de MapR dans la variable PATH de cette machine. D'après la documentation de MapR, la ou les librairies du client MapR correspondant à chaque OS peuvent être trouvées MAPR_INSTALL\ hadoop\hadoop-VERSION\lib\native. Par exemple, pour Windows, la bibliothèque est lib\MapRClient.dll dans le fichier Jar du client MapR. Pour plus d'informations, consultez la page suivante sur le site de MapR : http://www.mapr.com/blog/basic-notes-on-configuring-eclipse-as-a-hadoop-development-environment-for-mapr (en anglais).

    Si vous n'ajoutez pas de librairie, il est possible que vous rencontriez l'erreur suivante : no MapRClient in java.library.path.

  • Configurez l'argument -Djava.library.path, par exemple, dans la zone Job Run VM arguments de la vue Run/Debug de la boîte de dialogue [Preferences] dans le menu Window. Cet argument fournit au studio le chemin d'accès à la bibliothèque native du client MapR. Cela permet aux utilisateurs en souscription d'utiliser entièrement l'aperçu des données (Data viewer) afin de visualiser localement dans le studio les données stockées dans MapR.

Pour plus d'informations concernant l'installation d'une distribution Hadoop, consultez le manuel correspondant à la distribution Hadoop que vous utilisez.

Scénario associé

Aucun scénario n'est disponible pour la version Spark Streaming de ce composant.