Propriétés du tFileInputRegex pour Apache Spark Batch - 7.3

Regex

author
Talend Documentation Team
EnrichVersion
Cloud
7.3
EnrichProdName
Talend Big Data
Talend Big Data Platform
Talend Data Fabric
Talend Data Integration
Talend Data Management Platform
Talend Data Services Platform
Talend ESB
Talend MDM Platform
Talend Open Studio for Big Data
Talend Open Studio for Data Integration
Talend Open Studio for ESB
Talend Real-Time Big Data Platform
task
Création et développement > Systèmes tiers > Composants File (Intégration) > Composants Regex
Gouvernance de données > Systèmes tiers > Composants File (Intégration) > Composants Regex
Qualité et préparation de données > Systèmes tiers > Composants File (Intégration) > Composants Regex
EnrichPlatform
Studio Talend

Ces propriétés sont utilisées pour configurer le tFileInputRegex s'exécutant dans le framework de Jobs Spark Batch.

Le composant tFileInputRegex Spark Batch appartient à la famille Fichier.

Le composant de ce framework est disponible dans tous les produits Talend avec Big Data nécessitant une souscription et dans Talend Data Fabric.

Basic settings

Define a storage configuration component

Sélectionnez le composant de configuration à utiliser pour fournir les informations de configuration pour la connexion au système de fichiers cible, comme HDFS.

Si vous laissez cette case décochée, le système de fichiers cible est le système local.

Le composant de configuration à utiliser doit se trouver dans le même Job. Par exemple, si vous avez ajouté un composant tHDFSConfiguration dans votre Job, vous pouvez le sélectionner pour écrire le résultat dans un système HDFS donné.

Property type

Peut être Built-In ou Repository.

 

Built-In : aucune propriété n'est stockée de manière centrale.

 

Repository : Sélectionnez le fichier dans lequel sont stockées les propriétés du composant.

Dossier/Fichier

Parcourez votre système ou saisissez le chemin d'accès aux données à utiliser dans le système de fichiers.

Si le chemin d'accès défini pointe vers un dossier, ce composant lit tous les fichiers stockés dans le dossier, par exemple /user/talend/in. Si les sous-dossiers existent, ils sont automatiquement ignorés, sauf si vous définissez la propriété spark.hadoop.mapreduce.input.fileinputformat.input.dir.recursive à true dans la table Advanced properties, dans l'onglet Spark configuration.
  • Selon le système de fichiers à utiliser, configurez le composant de configuration placé dans votre Job, par exemple un tHDFSConfiguration pour HDFS, un tS3Configuration pour S3 et un tAzureFSConfiguration pour Azure Storage et Azure Data Lake Storage.

Si vous souhaitez spécifier plusieurs fichiers ou dossiers dans ce champ, séparez les chemins à l'aide d'une virgule (,).

Si le fichier à lire est un fichier compressé, saisissez son nom et son extension, puis tFileInputRegex décompresse automatiquement le fichier lors de l'exécution. Les formats de compression, ainsi que les extensions correspondantes, sont :

  • DEFLATE : *.deflate

  • gzip : *.gz

  • bzip2 : *.bz2

  • LZO : *.lzo

Le bouton pour parcourir votre système ne fonctionne pas en mode Local de Spark. Si vous utilisez les autres modes Yarn de Spark supportés par le Studio avec votre distribution, assurez-vous d'avoir correctement configuré la connexion dans un composant de connexion dans le même Job, comme le tHDFSConfiguration. Utilisez le composant de configuration relatif au système de fichiers à utiliser.

Row separator

Saisissez le séparateur utilisé pour identifier la fin d'une ligne.

Regex

Ce champ peut contenir plusieurs lignes. Intégrez à vos expressions régulières le subpattern correspondant aux champs à extraire.

Note : vous devez doubler les barres obliques inversées (Antislash) en regexp.

Avertissement :

La syntaxe regex requiert des guillemets doubles.

Header

Saisissez le nombre de lignes à ignorer au début du fichier.

Schema et Edit Schema

Modifiez le schéma en cliquant sur Edit Schema. Si le schéma est en mode Repository, trois options sont disponibles :

  • View schema : sélectionnez cette option afin de voir uniquement le schéma.

  • Change to built-in property : sélectionnez cette option pour passer le schéma en mode Built-In et effectuer des modifications locales.

  • Update repository connection : sélectionnez cette option afin de modifier le schéma stocké dans le référentiel et décider de propager ou non les modifications à tous les Jobs. Si vous souhaitez propager les modifications uniquement au Job courant, cliquez sur No et sélectionnez à nouveau la métadonnée du schéma dans la fenêtre Repository Content.

 

Built-in : le schéma est créé et conservé localement pour ce composant seulement.

 

Repository : le schéma existe déjà et est stocké dans le Repository. Ainsi, il peut être réutilisé dans des Jobs et projets.

Skip empty rows

Cochez cette case pour ignorer les lignes vides.

Die on error

Cochez cette case pour arrêter l'exécution du Job lorsqu'une erreur survient.

Advanced settings

Set minimum partitions

Cochez cette case pour contrôler le nombre de partitions à créer à partir des données d'entrée, pour ignorer le comportement de partitionnement par défaut de Spark.

Dans le champ qui s'affiche, saisissez, sans guillemet, le nombre minimal de partitions à obtenir.

Lorsque vous souhaitez contrôler le nombre de partitions, vous pouvez généralement configurer autant de partitions qu'il y a d'exécuteurs pour un traitement en parallèle, tout en gardant à l'esprit la mémoire disponible et l'utilisation de votre réseau par le transfert de données.

Encoding

Il est possible de rencontrer des problèmes d'encodage lorsque vous traitez les données stockées. Dans ce cas, cochez cette case pour afficher la liste Encoding.

Sélectionnez l'encodage à partir de la liste ou sélectionnez Custom et définissez-le manuellement.

Utilisation

Règle d'utilisation

Ce composant est utilisé en tant que composant de début et nécessite un lien de sortie.

Ce composant, ainsi que la Palette Spark Batch à laquelle il appartient, ne s'affiche que lorsque vous créez un Job Spark Batch.

Notez que, dans cette documentation, sauf mention contraire, un scénario présente uniquement des Jobs Standard, c'est-à-dire des Jobs Talend traditionnels d'intégration de données.

Connexion à Spark

Dans l'onglet Spark Configuration de la vue Run, définissez la connexion à un cluster Spark donné pour le Job complet. De plus, puisque le Job attend ses fichiers .jar dépendants pour l'exécution, vous devez spécifier le répertoire du système de fichiers dans lequel ces fichiers .jar sont transférés afin que Spark puisse accéder à ces fichiers :
  • Yarn mode (Yarn Client ou Yarn Cluster) :
    • Lorsque vous utilisez Google Dataproc, spécifiez un bucket dans le champ Google Storage staging bucket de l'onglet Spark configuration.

    • Lorsque vous utilisez HDInsight, spécifiez le blob à utiliser pour le déploiement du Job, dans la zone Windows Azure Storage configuration de l'onglet Spark configuration.

    • Lorsque vous utilisez Altus, spécifiez le bucket S3 ou le stockage Azure Data Lake Storage (apercu technique) pour le déploiement du Job, dans l'onglet Spark configuration.
    • Lorsque vous utilisez Qubole, ajoutez tS3Configuration à votre Job pour écrire vos données métier dans le système S3 avec Qubole. Sans tS3Configuration, ces données métier sont écrites dans le système Qubole HDFS et détruites une fois que vous arrêtez votre cluster.
    • Lorsque vous utilisez des distributions sur site (on-premises), utilisez le composant de configuration correspondant au système de fichiers utilisé par votre cluster. Généralement, ce système est HDFS et vous devez utiliser tHDFSConfiguration.

  • Standalone mode : vous devez choisir le composant de configuration selon le système de fichiers que vous utilisez, comme tHDFSConfiguration ou tS3Configuration.

    Si vous utilisez Databricks sans composant de configuration dans votre Job, vos données métier sont écrites directement dans DBFS (Databricks Filesystem).

Cette connexion fonctionne uniquement pour le Job dans lequel vous l'avez définie.